Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Operando’ methods for understanding catalysis in hydrogen storage

30.08.2005


As researchers at Pacifi c Northwest National Laboratory investigated the hydrogen storage capabilities of amine borane compounds, they knew that a rhodium catalyst readily releases hydrogen from the compound at room temperature. But they weren’t sure how it worked. Aside from the scientific quest for knowledge, understanding the mechanism at work with rhodium may help with the development of a more cost-effective catalyst to enable hydrogen storage.



PNNL scientists used a type of x-ray spectroscopy available at the Advanced Photon Source synchrotron at Argonne National Laboratory to look at the reaction as it was occurring. They found the active site of the catalyst centered around a cluster of about four rhodium atoms. They also found that the catalyst structure during the reaction was different than the structure before and after the reaction, thus highlighting the importance of measuring the catalyst structure during the reaction conditions.

By combining these results with subsequent in situ nuclear magnetic resonance and infrared spectroscopy, researchers were able to "see" what happens to the boron compound as the hydrogen is released. The results show the mechanism of how the amine borane compound binds to the active catalyst and then how the hydrogen molecule is released as a gas.


The research demonstrates the importance of "operando" methods - or observation of the fundamental molecular level measurements of the catalyst, the reactants and the products - under practical conditions. The PNNL group is using this approach to investigate other chemical reactions where little is known about the key catalytic processes.

Susan Bauer | EurekAlert!
Further information:
http://www.pnl.gov

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>