Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plugging the leaks in a quantum computer

12.08.2005


New work by two researchers at HP Laboratories Bristol sets out to solve one of the major difficulties in quantum computer architectures that use directly interacting qubits.



The problem is that the million-or-so qubits necessary to do useful calculations in a quantum computer would all feel the presence of each other, meaning that the information would leak in an uncontrollable way. The more qubits that are put together this way, the harder it is to control them.

The solution put forward by Dr Sean Barrett and Dr Pieter Kok, working at HP Laboratories Bristol, is to put every qubits in its own box, so that they cannot directly talk to each other. However, for quantum computing to work, there does need to be some interaction between qubits so that they can become entangled. In the HP Labs system this is achieved by using the fact that every qubit can emit light particles (photons).


Quantum computing is expected to be much more powerful than conventional information processing. It should be able to search faster and simulate better, factor large numbers efficiently and virtually guarantee secure communications. The technology might still be several decades away from practical implementation.

Barrett and Kok’s research is described in a recently published paper in Physical Review A http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000071000006060310000001&idtype=cvips&gifs=Yes

Their solution works like this: a detection system is arranged so that when an emitted photon is registered, it is impossible to tell -- even in principle -- which qubit it came from. This "quantum erasure" process generates an interaction between qubits, even though they remain in their separate boxes.

Now, the problem with current photon detector technology is that it isn’t good enough to produce a high-fidelity interaction between qubits -- the result is very prone to error. This problem is solved in Barrett and Kok’s scheme by a clever re-run of the interaction process. After a second photon detection (leading to the name of the technique, "double-heralding") the errors are removed, leaving a very high-fidelity interaction between qubits.

It is still the case that sometimes the whole procedure fails, for example when photons get lost along the way. However, the crucial point is that when the observer knows, through the double-heralded signature, that the procedure has worked, it is known that it has worked very well.

Because of the chance of failure, the procedure cannot be used directly in a quantum computation. However, there is a way of doing quantum computing that relies on first making a large collection of entangled qubits -- a network of qubits called a "cluster state". Despite the chance of failure, the researchers’ double-heralded interaction procedure can be used to build efficiently such a cluster state. Quantum computation is then performed simply by making measurements on individual qubits of the cluster state.

The researchers say that this is a practical, scalable and efficient scheme for quantum computation.

The key features of this new scheme are that the qubits can be a wide variety of physical systems (such as quantum dots, defects in solids or trapped ions) and that it can be implemented with current detector technology. Consequently, there is already interest from several experimental groups in building this system.

Julian Richards | alfa
Further information:
http://www.hpl.hp.com/research/qip/

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>