Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum decoys foil code-breaking attempts

19.07.2005


Computer security will benefit



Computer code-makers may soon get the upper hand on code-breakers thanks to a new quantum cryptography method designed at the University of Toronto. Quantum cryptography uses particles of light to share secret encryption keys relayed through fibre-optic communications.

A paper published in the June 16 issue of the Physical Review Letter demonstrates how senders can vary the intensity of laser light particles (photons) used in fibre-optic communications to create decoys that catch eavesdropping attempts. "To exchange secret communication, the sender and the recipient first have to exchange a random series of 0s and 1s – known as the encryption key – through a sequence of photons," says the study’s lead author Professor Hoi-Kwong Lo of U of T’s Department of Electrical and Computer Engineering and Department of Physics. The security of the message relies on the security of the encryption key. "If an eavesdropper tries to intercept the transmission of the encryption key, he will give himself away by disturbing the photons. However, real-life light sources occasionally send out more than one photon and an eavesdropper can steal the additional pulse without the sender knowing."


To address this problem, Lo’s technique manipulates the laser to create different signals of various intensities that act as decoys to distract the eavesdropper from the secret message. "Any attack will necessarily affect the decoy states and therefore be caught by the legitimate users, who will then use an encryption key only when it is guaranteed to be secure," says Lo, who adds that the work has immediate commercial applications.

Hoi-Kwong Lo | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>