Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting the lifetime of extreme ultraviolet optics

15.07.2005


Extreme ultraviolet lithography (EUVL) may be the next-generation patterning technique used to produce smaller and faster microchips with feature sizes of 32 nanometers and below. However, durable projection optics must be developed before this laboratory technique can become commercially viable. As part of its long-standing effort to develop EUVL metrology and calibration services (summarized in a recent paper*), the National Institute of Standards and Technology (NIST) is creating a measurement system for accelerated lifetime testing of the mirrors used in EUVL.



The light to be used in EUVL has a wavelength of only 13 nm. It can only be efficiently reflected with mirrors consisting of 50 alternating bi-layers of molybdenum and silicon, each only 7 nm thick and deposited with near-atomic-scale precision. So although the EUVL mirrors will be very large, up to 35 centimeter (cm) in diameter, they are actually incredibly precise nanostructured devices. A single commercial lithography instrument may require six of these mirrors at a cost of more than $1 million each.

The mirrors are delicate, but the EUV radiation they must reflect is intense and damaging. The combination of this harsh radiation with the trace levels of water vapor and hydrocarbons typically found in the vacuum environment of EUV first-generation exposure tools can lead to rapid corruption of the EUVL mirror surfaces. And a loss of just 1 percent to 2 percent of a mirror’s reflectivity renders the optical system useless for efficient production of nanometer-resolution circuit features.


To help the semiconductor industry meet its goal of EUVL production by 2010, NIST has established a dedicated beamline at its Synchrotron Ultraviolet Radiation Facility for durability testing of multilayer mirrors. Initial tests established that standard mirrors topped with silicon would have lifetimes of just minutes to hours, while ruthenium-capped mirrors had lifetimes of a few tens of hours, still a thousand times less than industry’s requirement.

To determine how damage scales with various parameters, NIST researchers recently exposed EUVL mirrors (provided by SEMATECH from work it co-funded) to varying levels of light intensity, water and hydrocarbon concentrations.

Contrary to expectations, they found that increasing amounts of water vapor caused less mirror damage, which may be due to a simultaneous increase in the ambient hydrocarbon levels. Subsequent experiments have shown that deliberately introducing trace amounts of a simple hydrocarbon like methanol can mitigate significantly the water-induced damage. NIST scientists are commissioning a new beamline devoted to accelerated testing and will add a second branch to the existing beamline that will provide broadband illumination (wavelengths of approximately 11 nm to 50 nm) into a single spot at approximately 100 times the intensity of the current system.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov
http://physics.nist.gov/euvl.

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>