Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Media invited to ua mirror lab for july 23 spincasting

15.07.2005


Astronomers and supporters from eight institutions around the country who are developing the Giant Magellan Telescope (GMT) will gather at The University of Arizona Steward Observatory Mirror Lab on Saturday, July 23, to celebrate the casting of the first of seven 8.4- meter (27-foot) mirrors for the facility.

With this casting, the GMT becomes the first extremely large ground-based telescope to start construction.

The GMT will feature six giant off-axis mirrors around a seventh on-axis mirror. This arrangement will give it a 22-meter (72-foot) aperture, or 4.5 times the collecting area of any current optical telescope. It will have the resolving power of a 25.6-meter (84-foot) diameter telescope, or 10 times the resolution of the Hubble Space Telescope. The GMT is slated for completion in 2016 at a site in northern Chile. More about the project is online at www.gmto.org



Mirror Lab workers began loading 40,000 pounds of glass into the 8.4-meter (27-foot) diameter mirror mold at 6 a.m. Tuesday, July 12, and lowered the furnace lid over the glass at midday July 13. The furnace will be turned on Sunday, June 17, so the glass will melt at peak temperature, 2,150 degrees Fahrenheit (1,178 Celsius) on Saturday, July 23. The furnace will rotate at 5 revolutions per minute as the glass melts around the 1,681 hexagonal cores in the mold. This will produce a ’honeycomb’ mirror blank with a faceplate of the desired curvature. The honeycomb mirror will weigh only a fifth as much as a solid mirror of the same size. More about this mirror casting is online at uanews.org/spots/11355.html Media are welcome to interview scientists from GMT partner institutions during the event. NOTE: MEDIA WILL NEED PRESS BADGES FOR LAB ACCESS. GMT partners are the Carnegie Observatories, Harvard University, Smithsonian Astrophysical Observatory, University of Arizona, University of Michigan, Massachusetts Institute of Technology, University of Texas at Austin, and Texas A & M University.

press badges:

To cover the Mirror Lab casting event, news media must apply through the UA Office of University Communications for press badges to be picked up at the Mirror Lab beginning noon, July 23. Media can pick up their credentials with valid identification. To apply for badges, contact the UA Office of University Communications, 520-621-1877.

schedule & interview opportunities:

The Mirror Lab, underneath the east football stadium addition at Sixth Street and Warren Avenue, Tucson, will open to credentialed media at noon Saturday, July 23. Media will be asked to vacate the catwalk and furnace-lid-shelf viewing areas from between 3 p.m. and 5 p.m. to allow GMT guests access. Viewing areas on the mezzanine and at the south end of the casting lab will also be crowded at this time. An accurate model of the Giant Magellan Telescope will be on display at the south area of the casting lab. Lori Stiles from UA’s Office of University Communications and Elizabeth Alvarez del Castillo from UA’s Steward Observatory will help arrange interviews and interview areas.

photos/video:

For b-roll footage that includes steps in the GMT mirror-making process, contact the UA Office of University Communications, 520-621-1877. High-resolution photos of mold core installation, glass inspection, glass loading, spincasting, etc. can be downloaded from the UA Office of University Communications Web site, http://uanews.org after tomorrow (July 15) afternoon. Click on "ImageBase" under the Services column at the left of this page, and use "mirror lab" as the search word.

mirror lab media contacts:

Lori Stiles, UA Office of University Communications, 520-626-4402, lstiles@u.arizona.edu Elizabeth Alvarez del Castillo, UA Steward Observatory, 520-626-9778, ealvarez@as.arizona.edu Tina McDowell of the Carnegie Institution of Washington, 202-939-1120, tmcdowell@pst.ciw.edu, and Dan Brocious of the Smithsonian Whipple Observatory, 520-670-5706, dbrocious@cfa.harvard.edu, are other Tucson contacts during spincasting.

Tina McDowell | UA Office
Further information:
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>