Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU physicists find way to create three-dimensional quasicrystals

12.07.2005


New York University physicists have applied a ground-breaking nanotechnology method to create three-dimensional quasicrystals, highly ordered structures that, unlike conventional crystals, never repeat themselves.



Metallic quasicrystals created from exotic alloys have shown promise for storing hydrogen more efficiently than crystalline hosts. Their non-repeating structure has the potential to dramatically strengthen industrial and commercial products. The NYU quasicrystals, by contrast, are made of glass and plastic and have potentially revolutionary optical properties.

The research, authored by NYU physicists David Grier and Yael Roichman, appears in the July 11 issue of Optics Express, a journal of the Optical Society of America.


Quasicrystals, discovered in the mid-1980s, are different from crystals, whose periodic structures resemble the patterns of tiles on a bathroom floor. By contrast, quasicrystals do not have this property, called translational symmetry, but, like crystals, can be rotated into registry with themselves, a property called rotational symmetry.

Quasicrystals’ rotational symmetry gives them many of the properties of conventional crystals. These same symmetries are responsible for conventional semiconducting crystals’ ability to act as switches for electrons. However, because quasicrystals do not possess the translational symmetry of conventional crystals, they have the freedom to take a broader range of forms, opening up the potential to serve a range of functions.

The quasicrystals reported by Roichman and Grier are created from tiny glass spheres, each comparable in size to the wavelength of light, stacked precisely in mathematically defined configurations. Like the crystalline structures responsible for the irridescence of gem opals and the colors of butterfly wings, these quasicrystalline sphere packings diffract different wavelengths of light into different directions, creating a rainbow-like display. For particular structures, and particular wavelengths, however, the quasicrystals offer no path at all for light. The resulting gaps in the rainbow, known as photonic bandgaps, can be manipulated to create switches for light. For instance, when translated into structures with features comparable to the wavelength of light, these properties of quasicrystals should enable them to manipulate light in much the same way that semiconductors manipulate electrons.

This has already been achieved for two-dimensional structures by previous researchers. However, prior to the work of Roichman and Grier, scientists had not been able to branch out into three-dimensional quasicrystals--thereby reaping the full benefits of their unique properties--because of the inability to create this class of quasicrystals with the proper materials at the right size scale.

Previous attempts at addressing this challenge included the use of lithographic techniques. In a departure from this approach, Roichman, Grier, and their colleagues used a method developed by Grier’s group called holographic optical trapping. This allows scientists to manipulate objects as small as a few nanometers across and as large as several hundred micrometers. These "optical tweezers" allow scientists to organize microscopic objects into interesting and useful configurations, to dissect them, to assemble them into devices, or to chemically transform them, all with unprecedented precision. Using this method on quasicrystals, Roichman and Grier were able to organize hundreds of free-floating microspheres into densely packed structures defined by the mathematical definition of quasicrystalline order.

Grier is part of an NYU team of internationally recognized physicists in the field of soft condensed matter physics, a new inter-disciplinary field that explores how materials are organized at microscopic levels, and which studies the physical properties of malleable materials such as colloids and polymers. With Grier, Paul Chaikin, formerly of Princeton University, and David Pine, formerly of the University of California, Santa Barbara, form the core of NYU’s Center for Soft Matter Research. Yael Roichman is a postdoctoral researcher in Grier’s group.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>