Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can nature deliver nanotechology’s promise?

08.07.2005


Computers, telephones, music players keep getting smaller and more powerful, but the technology making this possible can only be shrunk so far. Leeds researchers have won £2.6m to develop the ‘disruptive technology’ of the century by exploiting nature’s ability to work on the nanoscale – heralding a revolution in the way our gadgets operate.



Semiconductor chips, containing millions of transistors, are now found in everything from cars to fridges. However, the technology behind them has come a long way since the invention of the transistor in the 1940s, when they helped make radios truly portable and started a passion for music on the move. The creation of the integrated circuit allowed computers to shrink and led to the electronics revolution that we have witnessed over the last 50 years.

Nanotechnology researchers from electronic and electrical engineering, physics, chemistry, and the Astbury centre aim to combine biological molecules with electronics in a series of related projects. Ultimately, the team could replace transistors and create new, smaller, and more powerful, hybrid bio-electronic computer circuitry.


The number of transistors on a chip has increased exponentially since the 1970s, following what has been coined ‘Moore’s law’ after the predictions of Intel co-founder Gordon Moore. “But what happens when Moore’s law runs out of steam?” asks project leader Professor Giles Davies.

“If you think that a modern computer has 40-50 million transistors – maybe even 100 million – on a chip of semiconductor the size of a postage stamp, you can see how far technology has advanced,” said Professor Davies. “At best, transistors are currently 80 nanometres long.” (One nanometer is one millionth of a millimetre. A human hair is around 100,000 nanometres wide.)

“Part of the problem that we are facing is that as transistors are further miniaturised and positioned ever closer together, they start interfering with each other which affects their operation. Also, the chips become very expensive and difficult to make.”

The solution may lie with nature’s ability to manipulate strands of DNA and proteins, working on a nanoscale. Researchers have already demonstrated that certain molecules can act as electronic components – such as diodes – but the challenge is to bring these components together, in effect a new integrated circuit.

Biological materials could not only act as components themselves but could also be used to build the new chips. DNA and its famous double-helix structure forms when two compatible strands link together. This characteristic can be exploited to make sure components are assembled correctly.

“One of the most exciting aspects of the new research is to play the strengths of the biological materials and the semiconductor chips off one another. This technology will allow two-way sensing and control of signals; molecular and biological signals will be converted into electronic information, whilst electronic signals will control the activity of bio-molecules in a single programmable device,” said Professor Davies.

“For example, biological components could be used as sensors – perhaps sensing light to take a picture – and then feed the signal to the underlying microelectronics to be processed. The nanoscale nature of these parts would mean powerful computing power could be packaged in tiny devices.

“Biology may be the answer to nanotechnology’s promise and, together, could be the disruptive technology of the 21st century.”

The Research Councils UK-funded project is truly interdisciplinary and draws together researchers already working on nanotechnology across the University, including Dr Christoph Wälti and Professors Peter Stockley, Richard Bushby, Stephen Evans, and Edmund Linfield.

The basic technology award will fund seven new appointments across a range of disciplines and several technical posts. Professor Davies is looking for ‘fearless academics’ who are happy to work with colleagues who may have very different approaches to problems. They will be expected to take advantage of the project being based at a single University, meeting regularly and working in each other’s labs regardless of discipline.

Electronic and electrical engineering already has a hybrid bioelectronics lab with the equipment to generate biological materials and handle electronics. A suite of three new related labs are due for completion later this summer.

Together the researchers will become one of the world’s largest concentrations of expertise on bioelectronics with the potential to alter radically the way our gadgets work and how they’re built.

Hannah Love | alfa
Further information:
http://www.bioelectronics.leeds.ac.uk
http://reporter.leeds.ac.uk

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>