Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Extra-large ’atoms’ allow Penn physicists to solve the riddle of why things melt

01.07.2005


Physicists at the University of Pennsylvania have experimentally discovered a fundamental principal about how solid materials melt. Their studies have shown explicitly that melting begins at defects within the crystalline structure of solid matter, beginning along the cracks, grain boundaries and dislocations that are present in the otherwise orderly array of atoms. Their findings, which will appear today in the journal Science, answer longstanding fundamental questions about melting and will likely influence research in physics, chemistry, materials science and engineering, as well as studies of biological importance.

"Melting is one of the most fundamental phenomena in physics and is one of the phase transitions most frequently seen in daily life," said Arjun Yodh, a professor in Penn’s Department of Astronomy and Physics. "Yet major details about the mechanisms that drive the melting of an ice cube are missing. Superficially, the principle is straightforward. As a solid heats up, molecules within the ice acquire more energy and jiggle around more, driving the transition from a solid to a liquid. This is true in part, but reality is richer and more complex."

In the Science paper, the Penn physicists show direct evidence for a leading theory of melting, the notion that the start of melting – premelting – occurs at imperfections in the orderly structure of solid crystals. Premelting occurs in areas where the alignment of atoms is not perfect, especially at the boundaries within crystals where the patterns of atoms shift much like imperfections in the grain of a piece of wood.



One problem with proving theories of how things melt is size; one simply cannot see the atoms in a solid structure as it melts. Not only are the atoms very small, but the solid matter tends to obscure what goes on inside. To get around these problems, Yodh and his Penn colleagues made atoms bigger.

"We created translucent three-dimensional crystals from thermally-responsive colloidal spheres. The spheres are like small beads visible in an optical microscope," said Ahmed Alsayed, a doctoral student in the Department of Astronomy and Physics and lead author of the study. "The spheres swell or collapse significantly with small changes in temperature, and they exhibit other useful properties that allow them to behave like enormous versions of atoms for the purpose of our experiment."

As they raised the temperature of the colloidal particle crystal, the researchers could record changes within the crystal by following the motions of many individual spheres using a microscope and a video recorder.

"When we raised the temperature, we could track the vibrational movement of the spheres," Alsayed said. "Premelting was first revealed as an increased movement along the lines of defects in the crystal. These motions then spread into the more ordered parts of the crystal. We could see that the amount of premelting depended on the type of crystal defect and on the distance from the defect."

The researchers believe these observations will lead to a better understanding of the melting process and enable more quantitative predictions of just how a substance might melt.

"The existence of premelting inside solid materials implies that liquids exist within crystals before their melting temperature is reached," Yodh said. "Understanding this effect will provide insight for the design of strong materials that are more or less impervious to temperature changes and could also apply to our theories of how natural materials, such as water, evolve in our environment."

Other Penn researchers involved in this study are Mohammad Islam, Jian Zhang, and Peter Collings, who is also a professor of physics at Swarthmore College.

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Physics and Astronomy:

nachricht When AI and optoelectronics meet: Researchers take control of light properties
20.11.2018 | Institut national de la recherche scientifique - INRS

nachricht How to melt gold at room temperature
20.11.2018 | Chalmers University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>