Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers get clearer view of Earth’s atmosphere --- from the laboratory

24.06.2005


For scientists who want to discern the complex chemistry at work in Earth’s atmosphere, detecting a particular gas molecule can be as hard as finding a proverbial needle in a haystack.



Frank De Lucia, professor of physics at Ohio State University , and his colleagues recently used their FAST Scan Submillimeter Spectroscopy Technique (FASSST) to make the job easier.

The technique offers a way for scientists to examine the spectrum of light given off by a molecule. Each molecule has its own one-of-a-kind spectral pattern, like lines in a bar code. FASSST takes a snapshot of a wide range of spectral wavelengths, so scientists can easily recognize the pattern of the molecule they are looking for. Experiments that have traditionally taken weeks or months can be completed in a few seconds.


At the 60th International Symposium on Molecular Spectroscopy, hosted by Ohio State University , De Lucia and doctoral student Andrey Meshkov reported that the FASSST technique can be used to help scientists remove the signals from molecules that interfere with studies of gas systems such as Earth’s atmosphere.

De Lucia used the example of a problem common to his collaborators at NASA: satellite measurements of chemicals involved in the creation or destruction of ozone.

“Say you’re trying to look though the atmosphere to see small amounts of hydrogen peroxide. You have to understand how the signal from the hydrogen peroxide changes as it travels through the atmosphere to a satellite,” he said. “The path that the signal follows can be thousands of kilometers long, so you have to be able to subtract out the part of the atmosphere that you don’t care about to get at the really small effects that you do care about.”

The background signal from other molecules that scientists are not interested in -- frequently molecules of water, oxygen, or nitrogen -- is called the continuum. FASSST lets scientists get a handle on the continuum signal by essentially freezing an atmosphere in time so scientists can remove the parts they don’t want.

In their latest results reported at the symposium, De Lucia and Meshkov used FASSST to simultaneously measure the contributions of water, oxygen, and nitrogen to the continuum in an experimental gas mixture they created in the laboratory.

De Lucia said his colleagues at NASA and elsewhere can use experimental data from FASSST to better interpret satellite data and reduce error in their measurements.

The same technique aids detection of chemicals in the lab in general. Several of the presentations at the symposium are based on FASSST analyses of chemicals important to research in astronomy and biology.

Frank De Lucia | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

nachricht Improving understanding of how the Solar System is formed
12.11.2018 | Goethe-Universität Frankfurt am Main

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>