Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pitt and Bell Labs researchers send ’heavy photons’ over world-record distances

22.06.2005


Unsurpassed exciton distances, lifetimes may lead to new form of optical communication



When light hits a semiconductor material and is absorbed, its photons can become "excitons," sometimes referred to as "heavy photons" because they carry energy, like photons, but have mass, like electrons. Excitons typically exist for only a short time--trillionths of a second--and travel only a few microns before turning back into photons, which are then emitted from the material.

In the June 10 issue of the journal Physical Review Letters, scientists from the University of Pittsburgh and Bell Labs, the R&D arm of Lucent Technologies, report that they have designed and demonstrated a two-dimensional semiconductor structure in which excitons exist longer and travel farther than previously recorded. In their paper, titled "Long-Distance Diffusion of Excitons in Double Quantum Well Structures," David Snoke, senior author and associate professor of physics and astronomy at Pitt, and his colleagues report a system in which excitons move freely over distances of hundreds of microns. Their findings open up the possibility of new applications, such as excitonic circuits.


The researchers "stretched out" the excitons by pulling them apart with an electrical field. This extended the excitons’ lifetimes by a million (up to 30 microseconds) and expanded the distances the excitons traveled (up to a millimeter). They were able to "see" the excitons by observing the emitted photons. The semiconductor structures designed in the experiment are of "world-record quality," said Snoke.

The ability to control excitons over long distances could lead to excitonic circuits in which photons are converted directly into excitons, which are then steered around a chip and converted back into photons again at a different location, such as an optical memory device, said Snoke. "It’s another tool in our optics toolbox," he said.

"We’re doing this with semiconductor circuits now designed for moving electrons," he added. "It’s a completely new type of control over the system."

Other authors of the paper are Zoltan Voros and Ryan Balili, graduate students in Pitt’s Department of Physics and Astronomy, and Loren Pfeiffer and Kenneth West of Bell Labs.

Karen Hoffmann | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>