Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the mystery behind lightning’s puzzling friend

07.06.2005


Giant red blobs, picket fences, upward branching carrots, and tentacled octopi --- these are just a few of the phrases used to describe sprites --- spectacular, eerie flashes of colored light high above the tops of powerful thunderstorms that can travel up to 50 miles high in the atmosphere.



Most researchers have long supported the theory that sprites are linked to major lightning charges. Still, some scientists believe that conditions high in the atmosphere, like meteoritic dust particles or gravity waves might also induce sprite formation.

Now, a study led by Steven Cummer of Duke University, Durham, N.C. and Walter Lyons of FMA Research, Inc., Fort Collins, Colo. has found more evidence that sprites are generated by major lightning strikes. They also found the total charge, as it moves from the cloud to the ground, and multiplied by that distance, known as the "lightning charge moment," is most critical in the sprite’’s development. The study appeared in the April 2005 issue of Journal of Geophysical Research---Space Physics.


During the summer of 2000, researchers from across the nation participated in the Severe Thunderstorm Electrification and Precipitation Study. While the primary goal was to study severe thunderstorms and their link to heavy rain and hail, scientists also gathered important data on lightning’s role in triggering events above thunderclouds, like sprites.

Armed with the aid of sophisticated instruments and sensors, Cummer collected information from three thunderstorm outbreaks across the central U.S. and compared the "lightning charge moment" in both sprite and non---sprite producing lightning.

"The idea was that if other factors contributed to lowering the electric field threshold for sprite initiation, they would probably not always be present and we would find that sprites occasionally form after just modest lightning strokes," said Cummer.

Simulations created with the help of NASA computer animations and other data showed that weak lightning strikes do not create sprites. They also found factors other than the cloud---to---ground charge transfer are generally not important ingredients in sprite development.

Sprites, not formally identified until 1989 when the Space Shuttle (STS---34) recorded flashes as it passed over a thunderstorm in northern Australia, are largely unpredictable and brief --- lasting only 3 to 10 milliseconds and inherently difficult to study. But, the technique used in this study also proved that "a single sensor can monitor moment change in lightning strikes over a very large area, providing a reasonable way of estimating how often sprites occur globally," said Cummer. Much research to date has instead relied on the strategic placement of multiple low light video cameras.

Lightning’s other cousins, including elves that bring a millisecond flash of light that fills the entire night sky within a 100 kilometer (62 mile) radius of the associated lightning strike --- are generating much interest because of their strong electric fields and electromagnetic pulses that may interact with the Earth’s ionosphere and magnetosphere.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/vision/earth/environment/sprites.html
http://www.gsfc.nasa.gov

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>