Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Einstein Year 2005: Measuring the shape of distant stars using gravitational microlensing

01.06.2005


The Galaxy Cluster Abell 2218 is so massive that it magnifies and distorts images of faraway galaxies that appear as “arcs” throughout the picture. Copyright NASA/HST.


Comparison of the MOA-33 source oblateness with recent optical interferometry results for Achernar and Altair.


Fifty years after his death, Albert Einstein’s work still provides new tools for understanding our universe. An international team of astronomers has now used a phenomenon first predicted by Einstein in 1936, called gravitational lensing, to determine the shape of stars. This phenomenon, due to the effect of gravity on light rays, led to the development of gravitational optics techniques, among them gravitational microlensing. It is the first time that this well-known technique has been used to determine the shape of a star.

Most of the stars in the sky are point-like, making it very difficult to evaluate their shape. Recent progress in optical interferometry has made it possible to measure the shape of a few stars. In June 2003, for instance, the star Achernar (Alpha Eridani) was found to be the flattest star ever seen, using observations from the Very Large Telescope Interferometer (see ESO Press Release for details about this discovery). Until now, only a few measurements of stellar shape have been reported, partly due to the difficulty of carrying such measurements. It is important, however, to obtain further accurate determinations of stellar shape, as such measurements help to test theoretical stellar models.

For the first time, an international team of astronomers [1], led by N.J. Rattenbury (from Jodrell Bank Observatory, UK), applied gravitational lensing techniques to determine the shape of a star. These techniques rely on the gravitational bending of light rays. If light coming from a bright source passes close to a foreground massive object, the light rays will be bent, and the image of the bright source will be altered. If the foreground massive object (the “lens”) is point-like and perfectly aligned with the Earth and the bright source, the altered image as seen from the Earth will be a ring shape, the so-called “Einstein ring”. However, most real cases differ from this ideal situation, and the observed image is altered in a more complicated way. The image below shows an example of gravitational lensing by a massive galaxy cluster.



Gravitational microlensing, as used by Rattenbury and his colleagues, also relies on the deflection of light rays by gravity. Gravitational microlensing is the term used to describe gravitational lensing events where the lens is not massive enough to produce resolvable images of the background source. The effect can still be detected as the distorted images of the source are brighter than the unlensed source. The observable effect of gravitational microlensing is therefore a temporary apparent magnification of the background source. In some cases, the microlensing effect may increase the brightness of the background source by a factor of up to 1000. As already pointed out by Einstein, the alignments required for the microlensing effect to be observed are rare. Moreover, as all stars are in motion, the effect is transitory and non-repeating. Microlensing events occur over timescales from weeks to months, and require long-term surveys to be detected. Such survey programs have existed since the 1990s. Today, two survey teams are operating: a Japan/New Zealand collaboration known as MOA (Microlensing Observations in Astrophysics) and a Polish/Princeton collaboration known as OGLE (Optical Gravitational Lens Experiment). The MOA team observes from New Zealand and the OGLE team from Chile. They are supported by two follow-up networks, MicroFUN and PLANET/RoboNET, that operate about a dozen telescopes around the globe.

The microlensing technique has been applied to search for dark matter around our Milky Way and other galaxies. This technique has also been used to detect planets orbiting around other stars. For the first time, Rattenbury and his colleagues were able to determine the shape of a star using this technique. The microlensing event that was used was detected in July 2002 by the MOA group. The event is named MOA 2002-BLG-33 (hereafter MOA-33). Combining the observations of this event by five ground-based telescopes together with HST images, Rattenbury and his colleagues performed a new analysis of this event.

The lens of event MOA-33 was a binary star, and such binary lens systems produce microlensing lightcurves that can provide much information about both the source and lens systems. The particular geometry of the observer, lens and source systems during the MOA-33 microlensing event meant that the observed time-dependent magnification of the source star was very sensitive to the actual shape of the source itself. The shape of the source star in microlensing events is usually assumed to be spherical. Introducing parameters describing the shape of the source star into the analysis allowed the shape of the source star to be determined.

Rattenbury and his colleagues estimated the MOA-33 background star to be slightly elongated, with a ratio between the polar and equatorial radius of 1.02 -0.02/+0.04. However, given the uncertainties of the measurement, a circular shape of the star cannot be completely excluded. The figure below compares the shape of the MOA-33 background star with those recently measured for Altair and Achernar. While both Altair and Achernar are only a few parsecs from the Earth, the MOA-33 background star is a more distant star (about 5000 parsecs from the Earth). Indeed, interferometric techniques can only be applied to bright (thus nearby) stars. On the contrary, the microlensing technique makes it possible to determine the shape of much more distant stars. Indeed, there is currently no alternative technique to measure the shape of distant stars.

This technique, however, requires very specific (and rare) geometrical configurations. From statistical considerations, the team estimated that about 0.1% of all detected microlensing events will have the required configurations. About 1000 microlensing events are observed every year. They should become even more numerous in the near future. The MOA group is presently commissioning a new Japan-supplied 1.8m wide-field telescope that will detect events at an increased rate. Also, a US led group is considering plans for a space-based mission called Microlensing Planet Finder. This is being designed to provide a census of all types of planets within the Galaxy. As a by-product, it would also detect events like MOA-33 and provide information on the shapes of stars.

[1] The team is made of N.J. Rattenbury (UK), F. Abe (Japan), D.P. Bennett (USA), I.A. Bond (New Zealand), J.J. Calitz (South Africa), A. Claret (Spain), K.H. Cook (USA), Y. Furuta (Japan), A. Gal-Yam (USA), J-F. Glicenstein (France), J.B. Hearnshaw (New Zealand), P.H. Hauschildt (Germany), P.M. Kilmartin (New Zealand), Y. Kurata (Japan), K. Masuda (Japan), D. Maoz (Israel), Y. Matsubara (Japan), P.J. Meintjes (South Africa), M. Moniez (France), Y. Muraki (Japan), S. Noda (Japan), E.O. Ofek (Israel), K. Okajima (Japan), L. Philpott (New Zealand), S.H. Rhie (USA), T. Sako (Japan), D.J. Sullivan (New Zealand), T. Sumi (USA), D.M. Terndrup (USA), P.J. Tristram (New Zealand), J. Wood (New Zealand), T. Yanagisawa (Japan), P.C.M. Yock (New Zealand).

Dr. Jennifer Martin | EurekAlert!
Further information:
http://www.edpsciences.org

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>