NASA sees orbiting stars flooding space with gravitational waves

A scientist using NASA’s Chandra X-ray Observatory has found evidence that two white dwarf stars are orbiting each other in a death grip, destined to merge.


The data indicate gravitational waves are carrying energy away from the star system at a prodigious rate, making it a prime candidate for future missions designed to directly detect these ripples in space-time.

Einstein’s General Theory of Relativity predicted a binary star system should emit gravitational waves that rush away at the speed of light and cause the stars to move closer together. As the stars move closer together, the orbital period decreases, and it can be measured by Chandra. The orbital period of this system is decreasing by 1.2 milliseconds every year. This is a rate consistent with the theory that predicted loss of energy due to gravitational waves.

The system is known as RX J0806.3+1527 or J0806. The white dwarf pair in J0806 might have the smallest orbit of any known binary system. The stars are only about 50,000 miles apart, a fifth of the distance from the Earth to the moon. As the stars swirl closer together, traveling in excess of one million mph, the production of gravitational waves increases.

“If confirmed, J0806 could be one of the brightest sources of gravitational waves in our galaxy,” said Tod Strohmayer of NASA’s Goddard Space Flight Center, Greenbelt, Md. He presented data today at the American Astronomical Society meeting in Minneapolis. “It could be among the first to be directly detected with an upcoming space mission called LISA, the Laser Interferometer Space Antenna,” he added.

White dwarfs are remnants of stars that have used up all their fuel. Along with neutron stars and black holes, white dwarfs are called compact objects, because they pack a lot of mass into a small volume. The white dwarfs in the J0806 system each have an estimated mass of one-half the sun, yet are only about the size of Earth.

Optical and X-ray observations of J0806 showed periodic variations of 321.5 seconds, barely more than five minutes. The observation in J0806 is most likely the orbital period of the white dwarf system. However the possibility that it represents the spin of one of its white dwarfs cannot be completely ruled out.

“It’s either the most compact binary known or one of the most unusual systems we’ve ever seen. Either way it’s got a great story to tell,” Strohmayer said.

Strohmayer’s Chandra X-ray observations tighten orbital decay estimates made through optical independent observations by other research teams. Strohmayer’s data will be published in an upcoming issue of The Astrophysical Journal.

Media Contact

Megan Watzke EurekAlert!

More Information:

http://www.cfa.harvard.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors