Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preparing for impact

31.05.2005


On 4 July 2005, the NASA Deep Impact spacecraft will visit Comet 9P/Tempel 1. It will launch a 370 kg impactor probe that should produce a crater on the surface of the comet and a plume of gas, dust and ejected material.



Although dramatic images of the impact may be sent to Earth in near-real time by the Deep Impact spacecraft and its impactor, the spacecraft themselves have limited remote sensing capability. The parent spacecraft will observe the impact from 500 kilometres distance, and then turn to look at the other side of the nucleus, but most of the observations of the event will be carried out by other spacecraft and from Earth.

For this reason, a worldwide network of observers, both professional and amateur, is part of the Deep Impact project. Within the global network of space and Earth telescopes for this unprecedented astronomical event, Europe plays a significant role.


Two ESA spacecraft, ESA’s Rosetta comet-chaser and its XMM-Newton space observatory, together with the NASA/ESA Hubble Space Telescope, will monitor the comet before impact, and then watch the impact and its aftermath.

ESO’s Very Large Telescope (VLT) facilities in Chile will observe the event in a big observation campaign. ESA’s optical ground station at Tenerife, Spain, will also look at the impact.

Rosetta is in the most privileged position in space to watch this unique event, and will be able to monitor the comet continuously over an extended period.

Rosetta is likely to be one of the key observatories of this event because of its set of powerful remote-sensing instruments.

The Deep Impact experiment will be the first opportunity in time to study the crust and the interior of a comet. As the material inside the comet’s nucleus is pristine, it will reveal new information on the early phases of the Solar System.

It will also provide scientists with new insight on the physics of craters formation, and thereby give a better understanding on the crater record on comets and other bodies in the Solar System.

The scientific outcome of the experiment depends crucially on pre-impact and follow-up observations. Before the impact, it is necessary to find out as much about the comet as possible, such as size, albedo (reflectivity) and rotation period.

It is essential to have a good set of observations before the impact to unambiguously distinguish the effects of the impact from the natural activity of the comet.

Due to the currently limited understanding of the structure of these dirty ‘snowballs,’ it is not known what the effect of the impact will be. Some scientists predict the ejection of a plume and the creation of a football stadium sized crater. Others think that the comet could simply swallow the impactor with hardly any visible effect, or that it may eventually break up.

To prepare for the Deep Impact event, two teams of astronomers have already used ESO’s telescopes over several months to do pre-impact monitoring, taking images and spectra of the comet both in the visible and mid-infrared wavebands.

These teams make observations typically once per month, using either the 3.6m or the 3.5m New Technology Telescope (NTT) telescopes at La Silla.

ESO’s telescopes will also be used in the post-impact observations. As soon as the comet is visible after the impact from Chile, all major ESO telescopes – the four Unit Telescopes of the Very Large Telescope Array at Paranal, as well as the 3.6m, 3.5m NTT and the 2.2m ESO/MPG telescopes at La Silla – will be observing Tempel 1, in very close collaboration with ESA and the space mission’s scientific team.

Gerhard Schwehm | alfa
Further information:
http://www.esa.int/SPECIALS/Rosetta/SEM8PE0DU8E_0.html
http://www.esa.int

More articles from Physics and Astronomy:

nachricht First evidence on the source of extragalactic particles
13.07.2018 | Technische Universität München

nachricht Simpler interferometer can fine tune even the quickest pulses of light
12.07.2018 | University of Rochester

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>