Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists levitate diamond, lead and platinum

12.05.2005


Scientists at The University of Nottingham have successfully levitated diamond and some of the heaviest elements, including lead and platinum.



Using liquid oxygen — the main component in many rocket fuels — to increase the buoyancy created by a specially designed superconducting magnet, they could now, in theory, levitate an object with a density 15 times larger than that of osmium, the heaviest metal known in nature.

The science behind the research could be used to develop a variety of potential applications, especially in the mining and pharmaceutical industries.


Writing in the New Journal of Physics, the team led by Professor Laurence Eaves and Professor Peter King, in the University’s School of Physics and Astronomy, describes how mixtures of oxygen and nitrogen in liquid and gaseous states provide sufficient buoyancy to levitate a wide range of objects, including diamonds, a £1 coin and heavy metals such as gold, silver, lead and platinum.

Some materials, called diamagnetic, tend to become magnetized in a direction opposite to the magnetic field being applied to them. Magnetic levitation occurs when the force on such an object is strong enough to balance the weight of the object itself. If the object is immersed in a fluid such as a gaseous oxygen, the levitation can be enhanced by the effect of buoyancy caused by the ‘magneto-Archimedes’ effect.

Liquid oxygen is highly combustible and potentially dangerous to work with. However, it makes it much easier to float dense objects using commercially available magnets because the inherent magnetism of each molecule of oxygen boosts the buoyancy effect. This allows the levitation of objects as heavy as gold with relatively low-power magnets.

Professors Eaves and King and their co-workers have now investigated the use of a safer mixture of liquid nitrogen and oxygen, and found the optimum mixture for floating heavy objects in safety, making commercial applications of this technology possible.

For example, in mining for precious stones such as diamonds, a method for accurately filtering the precious gems from the surrounding rock and soil is worth its weight in gold.

Professor King said: “You can use this technology to accurately sort minerals. Under vibration you throw crushed ore into the air and in the magnet the different components experience different effective gravity. They therefore tend to land at different times and after a short while the vibration sorts them into bands according to their density. The method can discriminate between components with very small differences in density enabling you to extract the precious parts you require.”

Their research lab at University Park is also the only facility in the UK specialising in zero-gravity experiments and is currently being used by various research groups, including one studying how plants germinate and grow in zero-gravity conditions, essential knowledge for long-haul space flights. Their work is supported by the Basic Technology Scheme of Research Councils UK.

Prof. Peter King | alfa
Further information:
http://www.nottingham.ac.uk

More articles from Physics and Astronomy:

nachricht Observations of nearby supernova and associated jet cocoon provide new insights on gamma-ray bursts
18.01.2019 | George Washington University

nachricht A new twist on a mesmerizing story
17.01.2019 | ETH Zurich Department of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>