Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists levitate heaviest elements with help from cold oxygen

11.05.2005


Scientists at the University of Nottingham have successfully levitated diamond and some of the heaviest elements, including lead and platinum. Using liquid oxygen to increase the buoyancy created by a specially designed superconducting magnet, they could now levitate a hypothetical object with a density 15 times larger than that of the densest known material, osmium. This research is published today (11th May 2005) in the New Journal of Physics co-owned by the Institute of Physics and Deutsche Physikalische Gesellschaft (the German Physical Society).



Writing in the New Journal of Physics, the team led by Professor Laurence Eaves and Professor Peter King, describes for the first time how mixtures of oxygen and nitrogen in the liquid and gaseous states provide sufficient buoyancy to levitate a wide variety of objects including diamonds, a £1 coin, and heavy metals such as gold, silver, lead and platinum.

Some materials, called diamagnetic, tend to become magnetized in a direction opposite to the magnetic field being applied to them. Magnetic levitation occurs when the force on such an object is strong enough to balance the weight of the object itself. If the object is immersed in a fluid such as gaseous oxygen, the levitation can be enhanced by the effect of buoyancy caused by the "magneto-Archimedes" effect.


Liquid oxygen, the main component in many rocket fuels, is highly combustible. It is potentially dangerous to use but makes it much easier to float dense objects using commercially available magnets because it boosts the buoyancy effect due to the inherent magnetism of each molecule of oxygen. This allows you to float objects as heavy as gold with relatively low-power magnets. Eaves and King and their co-workers have now investigated the use of a safer mixture of liquid nitrogen and oxygen, and found the optimum mixture for floating heavy objects in safety, making commercial applications of this technology possible.

Levitating heavy objects in this way has a variety of potential applications, especially in the mining and pharmaceutical industries. In mining for precious stones such as diamonds, a method for accurately filtering the gems you want from the surrounding rock and soil is worth its weight in gold.

Peter King explains: "You can use this technology to accurately sort minerals. Under vibration you throw crushed ore into the air and in the magnet the different components experience different effective gravity. They therefore tend to land at different times and after a short while the vibration sorts them into bands according to their density. The method can discriminate between components with very small differences in density enabling you to extract the precious parts you require."

Their research lab is also the only facility in the UK specializing in zero-gravity experiments, and is currently being used by various research groups including one studying how plants germinate and grow in zero-gravity conditions, essential knowledge for long-haul space flights.

David Reid | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
17.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>