Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Living Metals

25.04.2005


Using synchrotron x-ray microbeams, a research team from the Max Planck Institute for Metals Research in Stuttgart and the ESRF has been able to observe for the first time that the microscopic structure of a crystalline material fluctuates in time. The results are published today in Science Express with the title: Scaling in the Time Domain: Universal Dynamics of Order Fluctuations in Fe3Al.



The research team investigated a metal alloy, composed of iron and aluminium. When the structure of such a crystalline material changes upon heating, x-ray scientists can observe this by means of a diffraction experiment: One class of interference peaks associated with the low-temperature structure disappears, while another class of x-ray peaks belonging to the new structure may emerge. For a fixed temperature, however, the x-ray diffraction pattern has hitherto always been found to be static according to standard textbook wisdom.

The novel observation is now that this x-ray diffraction pattern shows fluctuations in time when the beam is focused to a very small size of a few micrometers. This gives clearcut evidence that temporal structural fluctuations on an atomic scale are present in the crystal at fixed temperature. By using a very small beam, the number of the temporal fluctuations "seen" by the x-ray beam is so small that these fluctuations now become visible as x-ray intensity fluctuations.


This discovery helps to shed light on a very fundamental aspect in the theory of condensed matter, namely to understand and predict how a given material reacts upon external perturbations like changes in temperature, pressure, magnetic or electric fields. Solid state theorists predicted a long time ago that the way that a material responds to these changes of external conditions is governed by these temporal fluctuations in the system. For the iron-aluminium alloy that was studied, these experimental results can be used for a test of the existence of universal, materials-independent laws in the dynamics of microscopic fluctuations.

Montserrat Capellas | alfa
Further information:
http://www.esrf.fr/NewsAndEvents/PressReleases/Living_metals/

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>