Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Blob, the Very Rare Massive Star and the Two Populations

22.04.2005


Striking Image of Nebula N214C taken with ESO’s NTT at La Silla



The nebula N214, a large region of gas and dust located in a remote part of our neighbouring galaxy, the Large Magellanic Cloud, is a quite remarkable site were massive stars are forming. In particular, its main component, N214C (also named NGC 2103 or DEM 293), is of special interest since it hosts a very rare massive star, known as Sk-71 51 and belonging to a peculiar class with only a dozen known members in the whole sky. N214C thus provides an excellent opportunity for studying the formation site of such stars.

Using ESO’s 3.5-m New Technology telescope (NTT) located at La Silla (Chile) and the SuSI2 and EMMI instruments, astronomers from France and the USA studied in great depth this unusual region by taking the highest resolution images so far as well as a series of spectra of the most prominent objects present.


N214C is a complex of ionised hot gas, a so-called H II region, spreading over 170 by 125 light-years (see ESO PR Photo 12b/05). At the centre of the nebula lies Sk-71 51, the region’s brightest and hottest star. At a distance of ~12 light-years north of Sk-71 51 runs a long arc of highly compressed gas created by the strong stellar wind of the star. There are a dozen less bright stars scattered across the nebula and mainly around Sk-71 51. Moreover, several fine, filamentary structures and fine pillars are visible.

The green colour in the composite image, which covers the bulk of the N214C region, comes from doubly ionised oxygen atoms and indicates that the nebula must be extremely hot over a very large extent.

The Star Sk-71 51 decomposed

The central and brightest object in ESO PR Photo 12b/05 is not a single star but a small, compact cluster of stars. In order to study this very tight cluster in great detail, the astronomers used sophisticated image-sharpening software to produce high-resolution images on which precise brightness and positional measurements could then be performed (see ESO PR Photo 12c/05). This so-called "deconvolution" technique makes it possible to visualize this complex system much better, leading to the conclusion that the tight core of the Sk-71 51 cluster, covering a ~ 4 arc seconds area, is made up of at least 6 components.

From additional spectra taken with EMMI (ESO Multi-Mode Instrument), the brightest component is found to belong to the rare class of very massive stars of spectral type O2 V((f*)). The astronomers derive a mass of ~80 solar masses for this object but it might well be that this is a multiple system, in which case, each component would be less massive.

Stellar populations

From the unique images obtained and reproduced as ESO PR Photo 12b/05, the astronomers could study in great depth the properties of the 2341 stars lying towards the N214C region. This was done by putting them in a so-called colour-magnitude diagram, where the abscissa is the colour (representative of the temperature of the object) and the ordinate the magnitude (related to the intrinsic brightness). Plotting the temperature of stars against their intrinsic brightness reveals a typical distribution that reflects their different evolutionary stages.

Two main stellar populations show up in this particular diagram (ESO PR Photo 12d/05): a main sequence, that is, stars that like the Sun are still centrally burning their hydrogen, and an evolved population. The main sequence is made up of stars with initial masses from roughly 2-4 to about 80 solar masses. The stars that follow the red line on ESO PR Photo 12d/05 are main sequence stars still very young, with an estimated age of about 1 million years only. The evolved population is mainly composed of much older and lower mass stars, having an age of 1,000 million years.

From their work, the astronomers classified several massive O and B stars, which are associated with the H II region and therefore contribute to its ionisation.

A Blob of Ionised Gas

A remarkable feature of N214C is the presence of a globular blob of hot and ionised gas at ~ 60 arc seconds (~ 50 light-years in projection) north of Sk-71 51. It appears as a sphere about four light-years across, split into two lobes by a dust lane which runs along an almost north-south direction (ESO PR Photo 12d/05). The blob seems to be placed on a ridge of ionised gas that follows the structure of the blob, implying a possible interaction.

The H II blob coincides with a strong infrared source, 05423-7120, which was detected with the IRAS satellite. The observations indicate the presence of a massive heat source, 200,000 times more luminous than the Sun. This is more probably due to an O7 V star of about 40 solar masses embedded in an infrared cluster. Alternatively, it might well be that the heating arises from a very massive star of about 100 solar masses still in the process of being formed.

"It is possible that the blob resulted from massive star formation following the collapse of a thin shell of neutral matter accumulated through the effect of strong irradiation and heating of the star Sk-71 51", says Mohammad Heydari-Malayeri from the Observatoire de Paris (France) and member of the team."Such a "sequential star formation" has probably occurred also toward the southern ridge of N214C".

Newcomer to the Family

The compact H II region discovered in N214C may be a newcomer to the family of HEBs ("High Excitation Blobs") in the Magellanic Clouds, the first member of which was detected in LMC N159 at ESO. In contrast to the typical H II regions of the Magellanic Clouds, which are extended structures spanning more than 150 light years and are powered by a large number of hot stars, HEBs are dense, small regions usually "only" 4 to 9 light-years wide. Moreover, they often form adjacent to or apparently inside the typical giant H II regions, and rarely in isolation.

"The formation mechanisms of these objects are not yet fully understood but it seems however sure that they represent the youngest massive stars of their OB associations", explains Frederic Meynadier, another member of the team from the Observatoire de Paris. "So far only a half-dozen of them have been detected and studied using the ESO telescopes as well as the Hubble Space Telescope. But the stars responsible for the excitation of the tightest or youngest members of the family still remain to be detected."

Henri Boffin | alfa
Further information:
http://www.eso.org/outreach/press-rel/pr-2005/phot-12-05.html
http://www.eso.org

More articles from Physics and Astronomy:

nachricht When electric fields make spins swirl
15.11.2018 | Institute for Basic Science

nachricht Gravitational waves from a merged hyper-massive neutron star
15.11.2018 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>