Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Signatures of the first stars

15.04.2005


A primitive star with extremely low iron content has been discovered by an international research team from Sweden, Japan, Germany, USA, Australia and Great Britain. The results are published in Nature online this week.

In 2001, the giant star HE0107-5240 was discovered among a large number of stars examined as part of the Hamburg/ESO* survey. Detailed studies revealed that the star had by far the lowest iron content ever recorded - 200 000 times lower than the Sun. Previously, only stars with iron contents up to 10 000 times lower than the solar value were known. Recently, a second star was discovered with similar iron content, designated HE1327-2326.

- These two stars are the most chemically primitive stars known, and therefore provide information on the nature of the first objects that formed in the Universe after the Big Bang, Paul Barklem from Uppsala university, Sweden, says.



Notably, HE1327-2326 is not a giant but a dwarf or sub-giant star, meaning that it is comparatively unevolved. The abundance of some chemical elements in evolved giant stars may have been altered by processes occurring during the star’s evolution; however, in an unevolved dwarf or sub-giant star we expect that the chemical composition is close to the original composition of the gas from which the star formed.

Analysis of the spectra for both stars, obtained with the world’s largest telescopes, allows the chemical composition of each star to be determined. The stars’ chemical abundances show similarities, such as large abundances of carbon and nitrogen, which suggest that these two stars may have formed in a similar way. The detailed interpretation of the chemical signatures of these two stars, and similar stars for which we continue to search, should help us to understand exactly how the first generations of stars were formed, and which elements were produced when they ended their lives in supernova explosions.

* ESO = European Southern Observatory

Anneli Waara | alfa
Further information:
http://www.nature.com/cgi-taf/DynaPage.taf?file=/nature/journal/v434/n7035/abs/nature03455_fs.html

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>