Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough isolating embryo-quality stem cells from blood

12.04.2005


Scientists have developed the first reliable way to extract stem cells from blood without adding contaminating markers



A major breakthrough in stem cell research – a new tool that could allow scientists to harvest stem cells ethically - will be announced at the Institute of Physics’ conference Physics 2005 in Warwick later today (Tuesday 12th April).

Professor Josef Käs and Dr Jochen Guck from the University of Leipzig have developed a procedure that can extract and isolate embryo-quality stem cells from adult blood for the first time. This new technique could unlock the stem cell revolution and stimulate a boom in medical research using stem cells.


Stem cells are cells which have not yet differentiated into specialised tissues such as skin, brain or muscle. They promise a new class of regenerative medicine, which could repair apparently permanent damage such as heart disease or Parkinson’s. The cells are currently taken from aborted human foetuses, an issue which has led to controversy and opposition in many parts of the world. Any alternative source, such as voluntary adult donations, could spark a boom in new cures.

Scientists have known for some time that stem cells exist in adult human blood and certain other tissues. However the only reliable way to separate them involved marking the cells with a chemical dye, rendering them useless for medical purposes. Professor Käs’ technique for the first time uses a physical characteristic of each cell – its stretchiness or elasticity – instead of its biological make-up, to decide whether or not it’s a stem cell. Stem cells don’t need a rigid "cytoskeleton" to hold them in shape, which makes them stretchier than normal cells.

Käs and Guck’s machine uses a powerful beam of infrared laser light to stretch and measure cells one by one. His optical stretcher differs from an existing tool known as optical tweezers in which the light is focused to a sharp point to grab hold of a cell. In contrast, the optical stretcher uses un-focused light. This allows laser beams strong enough to detect stretching to be used without killing the cell.

According to Dr Michael Watts, an expert in haematology and stem cells at University College London, there are just 10,000 primitive cells in the average adult’s bloodstream. Of those, only 500 might have the potential to replace embryonic stem cells. Stem cell research requires millions of these cells.

Bone marrow donors are routinely treated with a drug known as G-CSF which "mobilises" stem cells from the bone marrow into the blood. After G-CSF treatment the donor’s blood is passed through a centrifuge and back into their body, akin to a kidney dialysis machine, harvesting two or three hundred million primitive cells in the process.

Various properties of these primitive cells have been used to try and isolate the 5% or so with the highest stem cell potential, but no single technology has proved completely successful for human stem cells. This is where the optical stretcher could come to the rescue, picking those cells one by one according to the strength of their cytoskeletons. Watts explains that such an advance could have far-reaching consequences for medical treatments. "We could add significantly to our knowledge of stem cell biology toward developing cellular therapies," he says.

The optical stretcher can already test 3,600 cells per minute. This is not yet fast enough for industrial separation of millions of high grade stem cells, but it promises a realistic alternative to embryo use if it can be scaled up. Meanwhile, it is already being used to isolate low-grade stem cells which can develop into skin. In collaboration with medical professionals in Leipzig, elderly patients are being treated for persistent non-healing wounds. Low-grade stem cells isolated from the patient’s own blood are applied to the wound to kick-start the healing process.

David Reid | EurekAlert!
Further information:
http://www.physics2005.iop.org
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>