Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find evidence of dark energy in our galactic neighborhood

17.03.2005


Astrophysicists in recent years have found evidence for a force they call dark energy in observations from the farthest reaches of the universe, billions of light years away.


A supercomputer-produced cross-section of part of the universe shows galaxies as brighter dots along filaments of matter, with a sea of dark energy filling in between the galactic islands. (Credit James Wadsley, McMaster University, Hamilton, Ontario)



Now an international team of researchers has used data from powerful computer models, supported by observations from the Hubble Space Telescope, to find evidence of dark energy right in our own cosmic neighborhood.

The data paint a picture of the universe as a virtual sea of dark energy, with billions of galaxies as islands emerging from the sea, said Fabio Governato, a University of Washington research associate professor of astronomy and a researcher with Italy’s National Institute for Astrophysics.


In 1929 astronomer Edwin Hubble demonstrated that galaxies are moving away from each other, which supported the theory that the universe has been expanding since the big bang. In 1999 cosmologists reported evidence that an unusual force, called dark energy, was actually causing the expansion of the universe to accelerate.

However, the expansion is slower than it would be otherwise because of the tug of gravity among galaxies. As the battle between the attraction of gravity and the repellent force of dark energy plays out, cosmologists are left to ponder whether the expansion will continue forever or if the universe will collapse in a "big crunch."

In 1997, Governato designed a computer model to simulate evolution of the universe from the big bang until the present. His research group found the model could not duplicate the smooth expansion that had been observed among galaxies around the Milky Way, the galaxy in which Earth resides. In fact, the model produced deviations from a purely radial expansion that were three to seven times higher than astronomers had actually observed, Governato said.

"The observed motion was small, and we could not duplicate it without the presence of dark energy," he said. "When we added the dark energy, we got a perfect match."

Governato is one of three authors of a paper describing the work, scheduled for publication in the Monthly Notices of the Royal Astronomical Society, an astronomy journal in the United Kingdom. Co-authors are Andrea Maccio of the University of Zurich in Switzerland and Cathy Horellou of Chalmers University of Technology in Sweden. The work was supported by grants from the National Science Foundation and Vetenskapsrådet, the Swedish Research Council.

The authors, part of an international research collaboration called the N-Body Shop that originated at the UW, ran simulations of universe expansion on powerful supercomputers in Italy and Alaska. Their findings provide supporting evidence for a sea of dark energy surrounding galaxies.

"We studied the properties of galaxies close to the Milky Way instead of looking billions of light years away," Governato said. "It’s like traveling from Seattle to Portland, Ore., rather than from Seattle to New York, to measure the Earth’s curvature."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>