Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black holes influence knowledge of the universe

11.03.2005


Black holes have a reputation for voraciously eating everything in their immediate neighborhood, but these large gravity wells also affect electromagnetic radiation and may hinder our ability to ever locate the center of the universe, according to an international research team.



"Any attempt to discover what was happening a long time ago at the beginning of our universe must take into account what gravitationally assisted negative refraction does to the radiation being viewed," says Dr. Akhlesh Lakhtakia, distinguished professor of engineering science and mechanics, Penn State.

Electromagnetic radiation is affected by the material through which it travels. A material with a negative index of refraction transmits light or other wave energy differently than one with a positive index of refraction. Natural materials have positive index of refraction. When an energy beam – light, radar, microwaves – passes through water or glass or some other natural material, the material displaces the beam in the same direction. The amount of displacement depends upon how different the material is from air or vacuum. The displacement, due to a material with negative index of refraction, is in the opposite direction.


Previously, Lakhtakia and Tom G. Mackay, lecturer in mathematics, University of Edinburgh, used Albert Einstein’s Special Theory of Relativity to examine refraction by moving materials. They calculated that negative refraction can be concluded to have occurred by an observer moving at a very high relative velocity in certain directions.

Later they showed that no material is needed for negative refraction in outer space. Instead, when a beam passes through the gravitational field of a massive object such as a rotating black hole, negative refraction is theoretically possible.

When it comes to the influence of gravity caused by rotating black holes or other massive objects, it really depends on where one stands. A local observer can only see a very small piece of the universal picture of how large gravitational forces influence electromagnetic radiation. To the local observer, gravity is uniform and does not cause negative refraction.

However, Lakhtakia and Mackay, assisted by Sandi Setiawan, a postdoctoral researcher at the University of Edinburgh, decided to look at a global observer -- one who stands in space-time as described by Einstein in his General Theory of Relativity. A global observer sees a region around rotating black holes, called the ergosphere, as possibly bending electromagnetic radiation according to a negative refractive index.

These new derivations, reported in the March 7 issue of Physics Letters A, indicate that not only do the effects of the minute stuff of the universe have to be considered when mapping the universe, but the existence of large gravity wells must also be considered.

"When we are tracking light, we must take into account gravitational forces," says Lakhtakia. "Although the effect is only significant very close to rotating black holes."

The three researchers have extended their theory of negative refraction to even more general scenarios, in a paper published today (March 8) in the New Journal of Physics, an electronic journal. As we reach out in extrasolar space, for example via Pioneer 10, scientists are getting more interested in the actual existences of such scenarios.

Normal light bending by a gravity source such as our sun is known as gravitational lensing. It has been suggested since Einstein’s time and was experimentally shown by a British team of scientists in 1919. This gravitational lensing sometimes causes multiple images to be seen. The effect is taken into account in global positioning systems. However, this light bending is positively refracted.

But, when we search for the origin of our universe, multiple black holes and other massive objects can make the light beams bend in unexpected and unpredictable ways.

"We should not be disappointed if we cannot discover the origin of the universe," says Lakhtakia. "The gravitational effect probably makes it so that we do not really know where we are looking."

Nevertheless, Lakhtakia and his collaborators are optimistic that scientists will eventually overcome many of the obstacles put forward by negative refraction in outer space.

A’ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>