Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists work to detect mysterious neutrinos

07.03.2005


Livermore scientists are working to solve a 50-year-old question: Can neutrinos – a particle that is relatively massless, has no electric charge yet is fundamental to the make-up of the universe – transform from one type to another?
Scientists are using two giant detectors, one at Fermi Lab and another in a historic iron mine in northern Minnesota, to work on the answer.

As part of the international team working on the Main Injector Neutrino Oscillation Search (MINOS) project, Lawrence Livermore National Laboratory researchers will use the detectors to explore the mysterious nature and properties of neutrinos. Namely, they will seek to discover how neutrinos "change flavors."


Neutrinos come in three "flavors:" electron, muon and tau. Each is related to a charged particle, which gives the corresponding neutrino its name. Neutrinos are extremely difficult to detect because they rarely interact with anything. Though they can easily pass through a planet, solid walls and even a human hand, they rarely leave a trace of their existence. "The probability of a neutrino interacting with anything is very small," said LLNL’s Peter Barnes, who along with Livermore’s Doug Wright and Ed Hartouni, is working on the MINOS experiment. "If you want to detect any neutrinos, you need something big."

Barnes, Wright and Hartouni are hoping that something big is a 6,000-ton detector lying deep in the Soudan, Minn. mine. The neutrinos will be generated along the underground beam line at Fermi Lab, will pass through the near detector at Fermi, and will travel through the Earth to the detector in Minnesota. Neutrinos are more easily detected when they are generated at a high energy (such as those at Fermi Lab).

The MINOS scientists chose the distance to the far detector to maximize the oscillation probability, which gives them the best opportunity to directly study the neutrino "flavor change."

Fusion in the sun results in electron neutrinos and scientists have predicted that if they can measure the electron neutrinos coming from the sun, they can measure the core of the sun. However, early experiments showed that less than half the expected neutrinos were observed on Earth. The idea that the missing electron neutrinos may have transformed into another type or "flavor" came alive.

This conclusion indicates that neutrinos do have some mass, small as it may be, in order for them to oscillate. So a portion of the electron neutrinos emitted from the sun could have changed flavors to muon or tau neutrinos before reaching Earth, thus solving the missing neutrino problem.

But it still doesn’t explain how or why this occurs, Barnes said. "Our goal is to understand the flavor oscillation properties of neutrinos," he said.

Studying the elusive neutrino will help scientists better understand particle physics, specifically how particles acquire mass, as well as its role in the formation of the universe and its relationship to dark matter.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>