Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers detect powerful bursting radio source

03.03.2005


Discovery points to new class of astronomical objects



Astronomers at Sweet Briar College and the Naval Research Laboratory (NRL) have detected a powerful new bursting radio source whose unique properties suggest the discovery of a new class of astronomical objects. The researchers have monitored the center of the Milky Way Galaxy for several years and reveal their findings in the March 3, 2005 edition of the journal, "Nature."

Principal investigator, Dr. Scott Hyman, professor of physics at Sweet Briar College, said the discovery came after analyzing some additional observations from 2002 provided by researchers at Northwestern University. "We hit the jackpot!" Hyman said referring to the observations. "An image of the Galactic center, made by collecting radio waves of about 1-meter in wavelength, revealed multiple bursts from the source during a seven-hour period from Sept. 30 to Oct. 1, 2002 – five bursts in fact, and repeating at remarkably constant intervals."


Hyman, four Sweet Briar students, and his NRL collaborators, Drs. Namir Kassim and Joseph Lazio, happened upon transient emission from two radio sources while studying the Galactic center in 1998. This prompted the team to propose an ongoing monitoring program using the National Science Foundation’s Very Large Array (VLA) radio telescope in New Mexico. The National Radio Astronomy Observatory, which operates the VLA, approved the program. The data collected, laid the groundwork for the detection of the new radio source. "Amazingly, even though the sky is known to be full of transient objects emitting at X- and gamma-ray wavelengths," NRL astronomer Dr. Joseph Lazio pointed out, "very little has been done to look for radio bursts, which are often easier for astronomical objects to produce."

The team has monitored the Galactic center for new transient sources and for variability in approximately 250 known sources, but the five bursts from the new radio source, named GCRT J1745-3009, were by far the most powerful seen. The five bursts were of equal brightness, with each lasting about 10 minutes, and occurring every 77 minutes. The source of the bursts is transient Hyman noted. "It has not been detected since 2002 nor is it present on earlier images."

Although the exact nature of the object remains a mystery, the team members currently believe that GCRT J1745-3009 is either the first member of a new class of objects or an unknown mode of activity of a known source class.

One important clue to understanding the origin of the radio bursts is that the emission appears to be "coherent," Hyman said. "There are very few classes of coherent emitters in the universe. Natural astronomical masers -- the analog of laser emission at microwave wavelengths -- are one class of coherent sources, but these emit in specific wavelengths. In contrast, the new transient’s bursts were detected over a relatively large bandwidth."

In addition to these intriguing properties, NRL astronomer Dr. Paul Ray and colleague, Dr. Craig Markwardt of NASA’s Goddard Space Flight Center, have searched the source for X-ray emission but have not found any convincing evidence. "The non-detection of X-ray emission is intriguing," Ray said. "Many sources that emit transient X-ray flares, such as black hole binary star systems, also have associated radio emission. If upon further observations, X-ray emission is definitively detected or ruled out, this will be a significant help in understanding the nature of this remarkable source."

"Needless to say, the discovery of these transients has been very exciting for our students," Hyman added. Participating in this research program has inspired at least two of Hyman’s students -- Jennifer Neureuther and Mariana Lazarova -- to pursue graduate studies in astronomy.

This project was supported at Sweet Briar College by funding from Research Corporation and the Jeffress Foundation. Basic research in radio astronomy at NRL is supported by the Office of Naval Research.

Further Research

Hyman and his NRL colleagues plan to continue monitoring the Galactic center and search for the source again with the VLA and other X-ray and radio telescopes. They are also developing (with Dr. Kent Wood of NRL) a model that attempts to account for the radio bursts as a new type of outburst from a class of sources known as "magnetars."

NRL is also contributing to an effort to build the world’s largest and most sensitive low-frequency telescope, called the Long Wavelength Array (LWA), which may revolutionize future searches for other radio transient sources. Current plans call for the LWA, which is being developed by the University of New Mexico-led Southwest Consortium, to be sited in New Mexico, not far from the VLA. "One of the key advantages of observing at long radio wavelengths," explained NRL astronomer, Dr. Namir Kassim, "is that the field-of-view is so large that a single observation can efficiently detect transient phenomena over a large region."

"When completed, the LWA may uncover hundreds of previously unknown radio transients, some of which may be examples of Jupiter-like planets orbiting other stars," Kassim added. Jupiter is the most famous example of a nearby radio transient.

Janice Schultz | EurekAlert!
Further information:
http://www.ccs.nrl.navy.mil

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>