Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Temperature Inside Collapsing Bubble Four Times That Of Sun

03.03.2005


Using a technique employed by astronomers to determine stellar surface temperatures, chemists at the University of Illinois at Urbana-Champaign have measured the temperature inside a single, acoustically driven collapsing bubble. Their results seem out of this world.

"When bubbles in a liquid get compressed, the insides get hot - very hot," said Ken Suslick, the Marvin T. Schmidt Professor of Chemistry at Illinois and a researcher at the Beckman Institute for Advanced Science and Technology. "Nobody has been able to measure the temperature inside a single collapsing bubble before. The temperature we measured - about 20,000 degrees Kelvin - is four times hotter than the surface of our sun."

This result, reported in the March 3 issue of the journal Nature by Suslick and graduate student David Flannigan, already has raised eyebrows. Their work is funded by The National Science Foundation and the Defense Advanced Research Projects Agency.



Sonoluminescence arises from acoustic cavitation - the formation, growth and implosion of small gas bubbles in a liquid blasted with sound waves above 18,000 cycles per second. The collapse of these bubbles generates intense local heating. By looking at the spectra of light emitted from these hot spots, scientists can determine the temperature in the same manner that astronomers measure the temperatures of stars.

By substituting concentrated sulfuric acid for the water used in previous measurements, Suslick and Flannigan boosted the brilliance of the spectra nearly 3,000 times. The bubble can be seen glowing even in a brightly lit room. This allowed the researchers to measure the otherwise faint emission from a single bubble.

"It is not surprising that the temperature within a single bubble exceeds that found within a bubble trapped in a cloud," Suslick said. "In a cloud, the bubbles interact, so the collapse isn’t as efficient as in an isolated bubble."

What is surprising, however, is the extremely high temperature the scientists measured. "At 20,000 degrees Kelvin, this emission originates from the plasma formed by collisions of atoms and molecules with high-energy particles," Suslick said. "And, just as you can’t see inside a star, we’re only seeing emission from the surface of the optically opaque plasma." Plasmas are the ionized gases formed only at truly high energies.

The core of the collapsing bubble must be even hotter than the surface. In fact, the extreme conditions present during single-bubble compression have been predicted by others to produce neutrons from inertial confinement fusion.

"We used to talk about the bubble forming a hot spot in an otherwise cold liquid," Suslick said. "What we know now is that inside the bubble there is an even hotter spot, and outside of that core we are seeing emission from a plasma."

James E. Kloeppel | News Bureau
Further information:
http://www.uiuc.edu

More articles from Physics and Astronomy:

nachricht From the cosmos to fusion plasmas, PPPL presents findings at global APS gathering
13.11.2018 | DOE/Princeton Plasma Physics Laboratory

nachricht A two-atom quantum duet
12.11.2018 | Institute for Basic Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>