Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spitzer Space Telescope finds bright infrared galaxies

02.03.2005


Cornell University-led team operating the Infrared Spectrograph (IRS), the largest of the three main instruments on NASA’s Spitzer Space Telescope, has discovered a mysterious population of distant and enormously powerful galaxies radiating in the infrared spectrum with many hundreds of times more power than our Milky Way galaxy. Their distance from Earth is about 11 billion light years, or 80 percent of the way back to the Big Bang.





Virtually everything about this new class of objects is educated speculation, the researchers say, since the galaxies are invisible to ground-based optical telescopes with the deepest reach into the universe. "We think we have an idea of what they are, but we are not necessarily correct," says Cornell senior research associate in astronomy Dan Weedman.

Among the more probable ideas are that these mysterious bodies are ultraluminous infrared galaxies, powered either by an active galactic nuclei (AGN) or by a starburst, a massive burst of star formation. AGNs are powered by the in-fall of matter to a massive black hole, while massive starbursts often are triggered by the collision of two or more galaxies. What makes the objects studied by the Spitzer team stand out is that previously known AGNs are "not nearly as powerful, far away, or as dust-enshrouded" as these bodies are, says Weedman.


The Cornell Spitzer team’s discovery is published in the March 1 issue of the Astrophysical Journal Letters (ApJL), published by the American Astronomical Society. The Spitzer telescope, which went into an Earth-trailing orbit around the sun in August 2003, is the last of NASA’s Great Observatories, the Hubble being the first. Spectra spread light out into its basic parts, like a prism turning sunlight into a rainbow. They contain the signatures, or "fingerprints," of molecules that contribute to an object’s light. This galaxy’s spectrum reveals the fingerprint for silicate dust (large dip at right), a planetary building block like sand, only smaller. This particular fingerprint is important because it helped astronomers determine how far away the galaxy lies, or more specifically, how much the galaxy’s light had stretched, or "redshifted," during its journey to Spitzer’s eyes. This galaxy was found to have a redshift of 1.95, which means that its light took about 11 billion years to get here. The silicate fingerprint is also significant because it implies that galaxies were ripe for planetary formation 11 billion years ago Ð back to a time when the universe was 3 billion years old. The universe is currently believed to be 13.5 billion years old. This is the furthest back in time that silicate dust has been detected around a galaxy. These data were taken by Spitzer’s infrared spectrograph in July, 2004. NASA/JPL-Caltech/Cornell Click on the image for a high-resolution version (3000 x 2400 pixels, 1351K) The IRS team used data obtained by the National Science Foundation’s telescopes at Kitt Peak National Observatory, for the National Optical Astronomy Observatory (NOAO) Deep Wide-Field Survey. The team also used a catalog of infrared sources obtained in a survey in early 2004 by another of the Spitzer telescope’s instruments, the Multiband Imaging Photometer for Spitzer (MIPS). From the thousands of MIPS sources in a three-degree square patch of the sky -- about one-fourth the size of the bowl of the Big Dipper -- in the constellation Boötes the Herdsman, the IRS team selected and observed 31 that are quite bright in the infrared but invisible in the NOAO survey.

"The NOAO Deep Wide-Field Survey is the best available optical survey for comparing to our data," Weedman says. "It would have been much more difficult to make this discovery without such a wide area of comparison. These NOAO data allowed us to compare the sky at infrared and optical wavelengths and find things that had never been seen before."

The Boötes area was chosen by the NOAO team because of the absence of obscuring dust in our galaxy, presenting a clear view of the distant sky. The presence of these mysterious, infrared, bright, but optically invisible, objects was first hinted at in 1983 in a paper by James Houck, Cornell’s Kenneth A. Wallace Professor of Astronomy and principal investigator for the IRS. Houck was interpreting data from another space probe he was involved with, the Infrared Astronomical Satellite (IRAS), the first astronomy mission devoted to searching the heavens for infrared sources. More than a decade later these strange objects were again recorded by the European Space Agency’s Infrared Space Observatory. "Spitzer is more than 100 times more sensitive than IRAS for detecting objects at infrared wavelengths," says Houck. "These celestial bodies are so far from our Milky Way galaxy that we detect them as they were when the universe was just 20 percent of its current age," says Sarah Higdon, a research associate in Cornell’s Department of Astronomy, who led the group that developed the software package for analyzing Spitzer data.

In addition to their incredible distance, these objects also are enshrouded by a great deal of dust, which Cornell astronomy research associate Jim Higdon describes as being "the size of smoke particles made of silicates."

Other authors of the ApJL paper are: from Cornell, Terry Herter and Vassilis Charmandaris; from the Spitzer Space Science Center, L. Armus, H.I. Teplitz and B.T. Soifer; from NOAO, M.J.I Brown (now at Princeton University), A. Dey and B.T. Jannuzi; from Steward Observatory, University of Arizona, E. Le Floc’h and M. Rieke; and from Leiden Observatory, Holland, Bernhard Brandl.

The IRS, the most sensitive infrared spectrograph to be sent into space, is a collaborative venture between Cornell and Ball Aerospace and funded by NASA through the Jet Propulsion Laboratory (JPL) and Ames Research Center. JPL manages the Spitzer Space Telescope for NASA. NOAO is operated by the Association of Universities for Research in Astronomy Inc., under a cooperative agreement with the National Science Foundation.

Reported and written for Cornell News Office by freelancer Larry Klaes.

Related World Wide Web sites: The following sites provide additional information on this news release. Some might not be part of the Cornell University community, and Cornell has no control over their content or availability.

David Brand | EurekAlert!
Further information:
http://www.cornell.edu
http://www.spitzer.caltech.edu/

More articles from Physics and Astronomy:

nachricht When electric fields make spins swirl
15.11.2018 | Institute for Basic Science

nachricht Gravitational waves from a merged hyper-massive neutron star
15.11.2018 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>