Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Consigned to Cern the last component of Cms solenoid

02.03.2005


It is the hugest superconducting solenoid in the world and it is able to generate a magnetic field 100.000 times stronger than the Earth’s one

The hugest superconducting solenoid ever built in the world is finally completed. It is formed by five huge modules connected each other and will generate a magnetic field of 4 Tesla, equal to 100.000 times the Earth magnetic field. This extraordinary system will be dedicated to Cms (Compact Muon Solenoid) experiment at Lhc accelerator at Cern. Cms magnet is the result of a large international collaboration among Italian Institute of Nuclear Physics, Cern, Commissariat pour l’Energie Atomic (Cea) in Saclay (France) the Eth-Z (Polytechnic of Zurich) and the best industries in this field in Italy, France, Switzerland, Germany, Russia and many other member countries of the collaboration. The consignment of the last module of Cms solenoid will take place officially during a ceremony at Cern, Tuesday, March 1.

Cms experiment will study the characteristics of particles produced in the collisions between proton beams moving into Lhc accelerator. The main aim of the experiment is identifying the Higgs boson, the most elusive particle of modern subnuclear physics. The Higgs boson, indeed, has not been directly observed yet. Although it is predicted by theoretical models, that assume its existence to explain why some particles own the essential characteristic named mass.



Cms will allow the study of different types of particles produced through proton collisions. Cms will separate them thanks to a very strong magnetic field that will deflect their tracks according to their electric charge and impulse. The five modules forming the solenoid will generate the magnetic field. Every module is 6 metres diameter, 2.5 metres length and 50 tonnes weight. Thanks to a sophisticated liquid Helium cooling system, modules will be kept to the low temperature of –269 C°, so that they become superconducting (superconductivity allows, without waste, circulation of huge currents that produce the powerful magnetic field). The whole solenoid will be contained in an enormous vacuum cylinder the will isolate it from the external environment. Finally a structure composed by 12.000 tonnes of iron will "bridle" the lines of the magnetic field that otherwise would be get lost causing disturbs. Cms will be an enormous system of 16 metres of diameter and 22 metres length: measures of a five level building!

"Italy has an essential role in Cms construction: Cms-Italy is indeed one of the main collaborations between high energy physicists in the world and counts among the others, 235 researchers, physicists and engineers belonging to 14 Infn sections and laboratories and to 13 Italian Universities. Italy has participated in the global planning of the system. Moreover the delicate phases of the winding of the conducting cable that form the modules and the realization of the refrigerating cylinders that contain them have been carried out in Italy thanks to the collaboration between Infn Section in Genoa and Ansaldo Superconductors industry. The same collaboration allowed to carry out other delicate phases, such as the final potting of the modules in epoxy resin through vacuum diving. This operation was necessary to fill with a solid matrix even the smallest interspaces. In this way it was possible to block the conducting cable and prevent even the smallest vibration, that could cause heat, modifying the very low temperatures necessary for the superconductivity" explains Guido Tonelli, Cms Italy national spokesman, professor of General Physics at Pisa University and collaborator of Infn.

The difficult and delicate work realized by physicists and engineers of Infn for the realization of the modules of Cms solenoid required the development of innovative technological solutions and a lot of precision. "In order to avoid imperfections in the conducting cable, new welding techniques have been carried out and proper equipment were invented to assure the perfect winding and the potting in epoxy resin of kilometres of conducting cable.

Moreover it was necessary to plan and to realize special equipments, able to guarantee mechanical precision equal to fractions of millimetres on dimensions of some metres. On the whole, the realization of the big solenoid was one of the main technological challenge of Cms: it took us about 10 years of work and an investment of about 80 millions of Euros. Superconductivity plays an always more important role in society: for instance all solenoids used for Nuclear Magnetic Resonance are superconducting. It is also essential that there are in Italy industrial top competences in this field. Infn was, with the Italian industry, among the forerunners for the development of this technology" remarks Pasquale Fabbricatore, manager of Infn of Genoa, and Italian spokesman of Cms-Solenoid Italy.

Even the transportation of the modules that form the solenoid of Cms from Genoa, where it was realized, to Geneva, was in a certain sense a delicate operation. The single huge modules were transported to Cern leaving from Genoa port and going up the Rhone up to Macon, in order to reduce the passage on road. The first of the five modules was consigned in February 2004. The fitting of Cms solenoid is foreseen by next summer, while the final test will take place by the end of the year.

Guido Tonelli | EurekAlert!
Further information:
http://www.pi.infn.it

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>