Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Small is different

18.02.2005


A computer simulation shows a jet of propane just six nanometers wide exiting a nozzle.


Computer sims vital tools in exploring nanoworld

Years ago, when Uzi Landman and his colleagues set out to uncover some of the rules that govern why a non-reactive metal like gold acts as a catalyst when it is in nanoclusters only a few atoms in size, they didn’t sit down in a lab with the precious metal. Instead, they ran computer simulations and discovered that gold is a very effective catalyst when it is in clusters of eight to two dozen atoms. They also found that electrical charging of gold is crucial to its catalytic capabilities. Six years later, the team has verified their earlier predictions experimentally, and they stand ready to further explore environmental effects on catalysis.

This practice of partnering computer simulations with real-world experiments is becoming more vital as scientists delve deeper into realms where the actors are measured on the nanoscale, Landman told a group of scientists Thursday, February 17 at the annual meeting of the American Association for the Advancement of Science (AAAS). "Small is different," said Landman, director of the Center for Computational Materials Science and professor of physics at the Georgia Institute of Technology. "We cannot use the way physical systems behave on the large scale to predict what will happen when we go to levels only a few atoms in size. In this size regime, electrons transport electricity in a different way, crystallites have different mechanical properties and gold nanowires have strength twenty times larger than a big bar of gold, and inert metals may exhibit remarkable catalytic activity. But we know the rules of physics, and we can use them to create model environments in which we can discover new phenomena through high-level computer-based simulations."



Computers are constantly becoming more powerful and capable of conducting more detailed explorations at the same time scientists across the globe are increasing their interest in the science of the small. The intersection of these two trends, said Landman, is allowing scientists to investigate realms that are too small for today’s technology to explore experimentally.

It’s not just a matter of making faster calculations, he said. "Experimentally, we can’t always go down to the resolution we need to see, explain and predict things, but with computer simulations we can go to any resolution we need," said Landman. "Therefore, you can ask questions, deeper questions, on how materials behave on the small scale, even if you can’t get to that fine resolution experimentally." This doesn’t mean that experiments aren’t necessary, said Landman. "It’s a supplementary and complimentary approach. The pillars of scientific methodology are composed now of experimentation, analytical theory and computer simulation."

In addition to their work on nanocatalysis, Landman and colleagues have used simulations to explore other phenomena, such as the possibility of producing and maintaining a stable flow of liquid on the nanoscale. Their models predicted that it is possible to produce liquid jets only six nanometers wide. To date, in collaboration with Landman’s theory group, there are teams of engineers building nozzles that can produce jets in the 100 nanometer range. Within one year, said Landman, they expect to produce "nanojets" in the 10 nanometer range.

"The opportunity to make new discoveries in ways that weren’t possible before is an incredible gift and it has come about only because we can now simulate environments on the computer that are either not yet possible, too expensive or too dangerous to do in the lab," said Landman. "We are now at a point in history where the science of the small holds the promise of producing a windfall of scientific discoveries. Computers serve tools for discovery in this exciting adventure."

David Terraso | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Physics and Astronomy:

nachricht Tangled magnetic fields power cosmic particle accelerators
14.12.2018 | DOE/SLAC National Accelerator Laboratory

nachricht In search of missing worlds, Hubble finds a fast evaporating exoplanet
14.12.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>