Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find part of universe’s missing matter

03.02.2005


Found: 7 percent of the mass of the universe. Missing since: 10 billion years ago.

Consider one more astronomical mystery solved. Scientists have located a sizeable chunk of the universe that seemed to be missing since back when the stars first formed. It’s floating in super-hot rivers of gas, invisible to the naked eye, surrounding galaxies like our own. And a completely different kind of mystery matter -- dark matter -- may have put it there. The results appear in the current issue of the journal Nature.

To make this latest discovery, astronomers at Ohio State University and their colleagues used NASA’s Chandra X-ray Observatory to take the highest-quality spectrum of its type ever made. Though astronomers had previously detected the rivers of gas with X-ray telescopes, this is the first time that the gas has been studied in enough detail to calculate how much of it is out there. The amount of gas matches the amount of material that went missing 10 billion years ago, said Smita Mathur, associate professor of astronomy at Ohio State.



She and doctoral student Rik Williams did this work with astronomers at the Harvard-Smithsonian Center for Astrophysics (CfA), the University of California, Berkeley, the Instituto de Astronomia in Mexico, and the Massachusetts Institute of Technology. The lead author on the paper is Fabrizio Nicastro of CfA. According to current theories, when the universe began, it contained a certain amount of normal matter, a cache of protons and neutrons that today make up all normal atoms -- “stuff” as we know it.

Astronomers can use optical telescopes to look back in time and see what happened to the normal atoms, called baryons. Around 10 billion years ago, when half of the baryons became stars and galaxies and lit up the sky, the other half just seemed to disappear.

This new study shows that the missing baryons are still out there, Mathur said, they’re just floating in gas that is too hot to see with an optical telescope. The gas that surrounds our galaxy, for example, is 100 times hotter than the sun -- so hot that it shines in high-energy X-rays instead of lower-energy visible light.

In 2002, Mathur and her colleagues used Chandra’s X-ray telescope to gather the first evidence that the gas was made of baryons. The image they obtained was a spectrum, a measurement of the different wavelengths of X-rays emanating from the material. But to prove that there was enough material there to account for the all the missing baryons, they knew they needed to take a better spectrum with the telescope. “Those first results were tantalizing, but not foolproof. The signal-to-noise ratio in the spectrum was just not good enough,” Mathur said.

They needed a bright light source to pump up the signal, one located on the other side of the gas as viewed from Earth, so that the light shined directly through the gas. They found their source in a quasar, located in the constellation Ursa Major -- the Big Dipper. Astronomers believe that quasars are galaxies with very massive black holes in the center. The black holes in quasars don’t just suck material in, they also shoot material out in a high-speed jet. The jet glows brightly, and the result is an intense beam of light -- exactly what Mathur and her colleagues needed to take their picture.

The astronomers decided to use the light from Markarian 421, one of the brightest quasars known. On two days -- one in October 2002 and another in July 2003 -- when Markarian 421 was at its brightest and the beam of light was pointing right at Earth, Mathur’s team took two very high quality X-ray spectra of the intervening gas. Judging by the high signal-to-noise ratio of the data, the astronomers believe that one of their images is the best X-ray spectrum ever taken.

That spectrum isn’t what most people would consider a pretty picture -- it’s really just a graph of energy levels of light that penetrated the gas -- but to Mathur it’s absolutely beautiful, because it proved definitively that there are enough baryons -- “normal” atoms -- out there to account for the missing mass. “This is such a wonderful spectrum that there is just no doubt about it,” she said. Once they had the new spectra, the astronomers were able to calculate the density of baryons in the gas, and confirmed that the amount of material matched the missing matter they were searching for.

As to how the missing baryons ended up where they are, Mathur suspects that they were drawn there by the gravity of a different kind of matter, known as dark matter. Astronomers know that some unseen material provides most of the gravity of the universe, though they disagree on what dark matter is actually made of. If Mathur and her colleagues are right, then their finding supports a dramatic theory: that dark matter provides a kind of backbone to the universe, where the structure of normal matter like galaxies follows an underlying structure of dark matter.

This research was sponsored by NASA-Chandra grants and NASA’s Long-Term Space Astrophysics program.

Smita Mathur | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>