Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists discover temperature key to avalanche movement

01.02.2005


100 years after Einstein’s landmark work on Brownian motion, physicists have discovered a new concept of temperature that could be the key to explaining how ice and snow particles flow during an avalanche, and could lead to a better way of handling tablets in the pharmaceutical industry. This research is reported today in a special Einstein Year issue of the New Journal of Physics published jointly by the Institute of Physics and the German Physical Society (Deutsche Physikalische Gesellschaft).



Everything from powdery snow to desert sands, from salt to corn flakes are granular materials. Physicists have known for many years that granular materials have many perplexing properties that make them behave at times liquid solids, liquids, and even gases. This new research reveals for the first time how to measure a concept called "granular temperature" – that could be the key to explaining how they behave.

"Take the solid snow covering a ski slope, for instance", suggests lead author of the paper Patrick Mayor of the EPFL in Lausanne, Switzerland. "While it stays still it is a solid, but as soon as it starts flowing downhill as happens during an avalanche the flowing material is behaving more like a liquid. Similarly, during a desert storm, sand grains are whipped up and behave like molecules in a gas, rather than as a solid".


"Whereas most materials are usually described as solid, liquid or gases, granular systems do not seem to fall into any of these categories and are often considered a separate state of matter of their own," says Mayor, "The diverse behaviour of granular materials makes it extremely difficult to establish a general theory that accounts for the observed phenomena."

Mayor and his colleagues, Gianfranco D’Anna, Alain Barrat, Vittorio Loreto, have shown that shaken granular matter behaves in a way related to Einstein’s theory of Brownian motion, first published in 1905.

The temperature of an object reflects the random motion of its constituent parts. For instance, the faster the molecules in a gas or liquid are moving around the higher the temperature of the material.

Temperature also measures the degree of agitation of molecules in a liquid or a gas. Mayor and his colleagues have now devised a thermometer that can measure the temperature of a granular material based on the degree of agitation of its component particles. The researchers also discovered that, unlike usual liquids, temperature varies depending on which way and how far they insert the "thermometer" into the granular material.

Being able to measure "temperature" might allow researchers to better understand the peculiar properties of a granular material, which is of crucial importance to industries that handle powders and particulate materials from pharmaceutical pills and food powders to sand and cement in the construction industry.

David Reid | EurekAlert!
Further information:
http://www.iop.org
http://www.njp.org

More articles from Physics and Astronomy:

nachricht Observations of nearby supernova and associated jet cocoon provide new insights on gamma-ray bursts
18.01.2019 | George Washington University

nachricht A new twist on a mesmerizing story
17.01.2019 | ETH Zurich Department of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Additive manufacturing reflects fundamental metallurgical principles to create materials

18.01.2019 | Materials Sciences

How molecules teeter in a laser field

18.01.2019 | Life Sciences

The cytoskeleton of neurons has been found to be involved in Alzheimer's disease

18.01.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>