Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meteorite discovery supports theory on supernova role in solar system creation

25.01.2005


Clear evidence in a Chinese meteorite for the past presence of chlorine-36, a short-lived radioactive isotope, lends further support to the controversial concept that a nearby supernova blast was involved in the formation of our solar system, according to a report forthcoming in the February 1 issue of the Proceedings of the National Academy of Sciences (to be published online today).



Known as the Ningqiang carbonaceous chondrite, the primitive meteorite is a space relic that formed shortly after the solar system’s creation. It contains pockets of still older materials or "inclusions" that contain that contain calcium, aluminum and sodalite, a chlorine-rich mineral.

A Chinese-American team of scientists including Yangting Lin, Ziyuan Ouyang and Daode Wang from the Chinese Academy of Sciences, and Yunbin Guan and Laurie Leshin from Arizona State University found the rare isotope sulfur-36 in association with the sodalite. Though it can be formed in various ways, sulfur-36 is a natural decay product of chlorine-36 and its association with the chlorine in the sodalite is thus strong evidence for the past presence of chlorine-36, which has a half-life of only 300,000 years, in the early solar system.


The solar system’s chlorine-36 could have formed in two different ways – either in the explosion of a supernova or in the irradiation of a nebular cloud near the forming Sun. The irradiation explanation is unlikely in this case, however, since the mineral the chlorine-36 was discovered in must have formed a significant distance from the sun.

"There is no ancient live chlorine-36 in the solar system now," said Leshin, who is director of ASU’s Center for Meteorite Studies. "But this is direct evidence that it was here in the early solar system.

"We have now discovered the first solid evidence for two different short-lived radionuclides in the GeoSIMS Lab at ASU – iron-60 and chlorine-36 -- and both of them provide strong evidence for where the solar system’s short-lived radionuclides came from. It’s producing a really strong argument that these radionuclides were produced in a supernova that exploded near the forming solar system and seeded the solar system with these isotopes."

In a "Perspectives" article in the journal Science last spring, Leshin and others argued that the presence of iron-60 was evidence that the solar system formed as a result of violent star-creation processes in a dense nebula rife with short-lived, high-mass stars and supernovas – a very different creation story than the traditional view that the solar system formed from a slowly condensing molecular cloud. (To see the release on the Science paper, see http://www.asu.edu/asunews/research/sun_earth_creation.htm )

Leshin points out that the current paper is part of a growing collaboration between space sciences at ASU and the Chinese science community, in this case being driven by Guan, a native of China, and manager of the ASU GeoSIMS Lab.

"Lin, the first author on this paper, was a visiting fellow in our lab for six months. We’ve published several papers on meteorites with groups in China – it’s a very fruitful relationship," she said.

James Hathaway | EurekAlert!
Further information:
http://www.asu.edu

More articles from Physics and Astronomy:

nachricht ASU astrophysicist helps discover that ultrahot planets have starlike atmospheres
13.08.2018 | Arizona State University

nachricht UT-ORNL team makes first particle accelerator beam measurement in six dimensions
13.08.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Can radar replace stethoscopes?

14.08.2018 | Medical Engineering

The end-Cretaceous extinction unleashed modern shark diversity

14.08.2018 | Life Sciences

Light-controlled molecules: Scientists develop new recycling strategy

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>