Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The dynamo in the Cornfield

07.01.2005


To understand our planet’s magnetic field, Wisconsin scientists are studying a ball of molten metal

In an underground bunker that brushes up against a barnyard on one side and a cornfield on the other, scientists from the University of Wisconsin, Madison, are trying to solve an enduring cosmic mystery: how does the Earth generate its magnetic field--the vast, invisible web that shapes the aurora, makes compass needles point north, and shields us from solar storms? And how do similar fields get generated in almost every other planet in our solar system, as well as in the Sun, other stars, and even entire galaxies?

Their tool is the Madison Dynamo Experiment, a newly operational laboratory model of the Earth’s molten core. Five years in the making, with support provided jointly by the National Science Foundation (NSF) and the Department of Energy, the experiment is the largest of half a dozen such efforts worldwide. And like all the others, says UW physicist Cary Forest, principal investigator on the project, it is designed to fill in some gaping holes in our understanding.



Theory has it that magnetic fields tend to arise spontaneously in any rotating, electrically conducting fluid, explains Forest, whether that fluid is the molten iron in the Earth’s deep interior or the multi-million-degree plasma at the center of the Sun. But empirical evidence is much harder to come by, given that no one has yet figured out how to stick a probe into the core of the Earth, or into the heart of a star.

Thus the gaps. Says Forest, "How fast do the naturally occurring magnetic fields grow? When do they stop growing? What causes them to stop growing? That’s the big one. These are really, really fundamental questions that theory doesn’t address."

And thus the Madison Dynamo Experiment. At its heart is a one-meter-wide, stainless steel sphere that contains about a ton of sodium metal, which serves as the conducting fluid. Sodium metal is a dull, silvery substance that has the consistency of soft cheese at room temperature, and a dangerous habit of reacting violently with moisture and many other things. But sodium also has the advantage of melting at the comparatively low temperature of 98 degrees centigrade, or 208 degrees Fahrenheit, above which it flows like water. (Iron, by contrast, doesn’t melt until 1538 degrees centigrade, or 2800 degrees Fahrenheit.)

When the experiment is in operation, two opposing propellers stir the molten sodium in ways that approximate the flow of molten iron inside the Earth. "At the core of the Earth, it is thought that there are lots of little flows and swirls occurring that contribute to the generation of the planet’s magnetic field," says Forest. But "it’s the details that are important, and with the Madison Dynamo Experiment we can turn the knobs and see what happens."

Indeed, says Forest, with the Madison Dynamo Experiment now operational and generating data, the secrets of how natural dynamos perform will begin to emerge and the limits of current theory can begin to be tested.

Micth Waldrop | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht Rapid water formation in diffuse interstellar clouds
25.06.2018 | Max-Planck-Institut für Kernphysik

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>