Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers present Cassini findings at Saturn

20.12.2004


As NASA’s Cassini spacecraft approached Saturn last July, it found evidence that lightning on Saturn is roughly one million times stronger than lightning on Earth.



That’s just one of several Cassini findings that University of Iowa Space Physicist Don Gurnett will present in a paper to be published Thursday, Dec. 16 in Science Express, an online version of the journal Science, and in a talk to be delivered Friday, Dec. 17 at a meeting of the American Geophysical Union in San Francisco.

Other findings include:

  • Cassini impacted dust particles as it traversed Saturn’s rings.
  • Saturn’s radio rotation rate varies.

The comparison between Saturn’s enormously strong lightning and Earth’s lightning began several years ago as the Cassini spacecraft prepared for its journey to Saturn by swinging past the Earth to receive a gravitational boost. At that time, Cassini started detecting radio signals from Earth’s lightning as far out as 89,200 kilometers from the Earth’s surface. In contrast, as Cassini approached Saturn, it started detecting radio signals from lightning about 161 million kilometers from the planet. "This means that radio signals from Saturn’s lightning are on the order of one million times stronger than Earth’s lightning. That’s just astonishing to me!" says Gurnett, who notes that some radio signals have been linked to storm systems observed by the Cassini imaging instrument.


Earth’s lightning is commonly detected on AM radios, a technique similar to that used by scientists monitoring signals from Cassini.

Regarding Saturn’s rings, Gurnett says that the Cassini Radio and Plasma Wave Science (RPWS) instrument detected large numbers of dust impacts on the spacecraft. Gurnett and his science team found that as Cassini approached the inbound ring plane crossing, the impact rate began to increase dramatically some two minutes before the ring plane crossing, then reached a peak of more than 1,000 per second at almost exactly the time of the ring plane crossing, and finally decreased to pre-existing levels about two minutes later. Gurnett notes that the particles are probably quite small, only a few microns in diameter, otherwise they would have damaged the spacecraft

Finally, variations in Saturn’s radio rotation rate came as a surprise. Based upon more than one year of Cassini measurements, the rate is 10 hours 45 minutes and 45 seconds, plus or minus 36 seconds. That’s about six minutes longer than the value recorded by the Voyager 1 and 2 flybys of Saturn in 1980-81. Scientists use the rotation rate of radio emissions from the giant gas planets such as Saturn and Jupiter to determine the rotation rate of the planets themselves because the planets have no solid surfaces and are covered by clouds that make direct visual measurements impossible.

Gurnett suggests that the change in the radio rotation rate is difficult to explain. "Saturn is unique in that its magnetic axis is almost exactly aligned with its rotational axis. That means there is no rotationally induced wobble in the magnetic field, so there must be some secondary effect controlling the radio emission. We hope to nail that down during the next four to eight years of the Cassini mission."

One possible scenario was suggested nearly 20 years ago. Writing in the May 1985 issue of "Geophysical Research Letters," Alex J. Dessler, a senior research scientist at the Lunar and Planetary Laboratory, University of Arizona, argued that the magnetic fields of gaseous giant planets, such as Saturn and Jupiter, are more like that of the sun than of the Earth. The sun’s magnetic field does not rotate as a solid body. Instead, its rotation period varies with latitude. Commenting earlier this year on the work of Gurnett and his team, Dessler said, "This finding is very significant because it demonstrates that the idea of a rigidly rotating magnetic field is wrong. Saturn’s magnetic field has more in common with the sun than the Earth. The measurement can be interpreted as showing that the part of Saturn’s magnetic field that controls the radio emissions has moved to a higher latitude during the last two decades."

The radio sounds of Saturn’s rotation -- resembling a heartbeat -- and other sounds of space can be heard by visiting Gurnett’s Web site at: http://www-pw.physics.uiowa.edu/space-audio.

Cassini, carrying 12 scientific instruments, on June 30, 2004 became the first spacecraft to orbit Saturn and begin a four-year study of the planet, its rings and its 31 known moons. The $1.4 billion spacecraft is part of the $3.3 billion Cassini-Huygens Mission that includes the Huygens probe, a six-instrument European Space Agency probe, scheduled to land on Titan, Saturn’s largest moon, in January 2005.

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu
http://www.nasa.gov/cassini

More articles from Physics and Astronomy:

nachricht Computer model predicts how fracturing metallic glass releases energy at the atomic level
20.07.2018 | American Institute of Physics

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>