Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Control circuit for future supercomputer to be produced in Finland

08.12.2004


The circuit will improve the computational accuracy and efficiency of quantum computers operating at extremely low temperatures.



Quantum computers require an ambient temperature of approximately -273 degrees centigrade to function properly. The Technical Research Centre of Finland (VTT) is to build a control circuit for such a superconducting computer that will function at very low temperatures. Future quantum computers will be able to crack IT encryption codes and perform searches of enormous databases, which are currently impossible. The memory bits of a quantum computer may have several states simultaneously. This feature has enabled the few existing quantum computers, which although still primitive may yet achieve super efficiency in the future.

The high efficiency of a quantum computer facilitates computing far beyond the capacity of present-day equipment. For example, where current computers perform 1,000,000 searches in an unorganised database, quantum computers will perform approximately 1,000 searches, thus reducing the number by 1,000-fold. In the future the most extensive and complicated computing tasks can only be resolved with a quantum computer.


The cryogenic control circuit to be constructed at VTT will bring us one step closer to the speed and accuracy required of a quantum computer. The control circuits operate at just 0.02 degrees centigrade above absolute zero (- 273.15 degrees centigrade). Thus far quantum computers have been controlled at room temperature, which has prevented the full use of their incredible speed. In addition, unlike quantum computers, the memory bits of modern computers only have two alternative states.

The EU-funded project carried out by VTT and the Helsinki University of Technology (HUT) involves the design of an integrated circuit comprising a quantum computer prototype and its control - the first one to operate in a cold environment. This enables accurate and fast control, which is less vulnerable to disturbances than the present-day ’room temperature’ control. VTT will also build the integrated circuit, while the quantum bits will be constructed using nanotechnology (a millionth of a millimetre) techniques by the other top research teams involved in the project, including the CEA nuclear energy institute in France, the Chalmers University of Technology in Sweden and the IPHT Institute in Jena, Germany.

In connection with low-temperature quantum technology, VTT and HUT have developed a wholly new kind of charge pump. In theory, the pump has a capacity up to 1,000-fold (one nanoampere) higher than that of currently used pumps (one picoampere) without compromising accuracy. The pump developed at VTT may essentially facilitate the definition of the electro-technical current normal (current standard), in the international SI system of units, which in turn will facilitate the functional testing of industrial current meters. In addition, the new current standard is one of the three fundamental quantities in electrical engineering, and it may revolutionise the electro-technical foundation of the entire SI system.

The new pump and controlled control of the quantum computer are connected with the Doctoral dissertation of Antti Niskanen (26). The dissertation of the young VTT Research Scientist was examined at HUT on 26 November. Construction of the new control circuit at VTT is a continuation of Niskanen’s work. In 2005 Niskanen will join the quantum technology top research unit NEC in Japan as Visiting Researcher.

Antti Niskanen | alfa
Further information:
http://www.vtt.fi
http://www.vtt.fi/inf/pdf/publications/2004/P552.pdf

More articles from Physics and Astronomy:

nachricht Astrophysicists measure precise rotation pattern of sun-like stars for the first time
21.09.2018 | NYU Abu Dhabi

nachricht Halfway mark for NOEMA, the super-telescope under construction
20.09.2018 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>