Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Control circuit for future supercomputer to be produced in Finland

08.12.2004


The circuit will improve the computational accuracy and efficiency of quantum computers operating at extremely low temperatures.



Quantum computers require an ambient temperature of approximately -273 degrees centigrade to function properly. The Technical Research Centre of Finland (VTT) is to build a control circuit for such a superconducting computer that will function at very low temperatures. Future quantum computers will be able to crack IT encryption codes and perform searches of enormous databases, which are currently impossible. The memory bits of a quantum computer may have several states simultaneously. This feature has enabled the few existing quantum computers, which although still primitive may yet achieve super efficiency in the future.

The high efficiency of a quantum computer facilitates computing far beyond the capacity of present-day equipment. For example, where current computers perform 1,000,000 searches in an unorganised database, quantum computers will perform approximately 1,000 searches, thus reducing the number by 1,000-fold. In the future the most extensive and complicated computing tasks can only be resolved with a quantum computer.


The cryogenic control circuit to be constructed at VTT will bring us one step closer to the speed and accuracy required of a quantum computer. The control circuits operate at just 0.02 degrees centigrade above absolute zero (- 273.15 degrees centigrade). Thus far quantum computers have been controlled at room temperature, which has prevented the full use of their incredible speed. In addition, unlike quantum computers, the memory bits of modern computers only have two alternative states.

The EU-funded project carried out by VTT and the Helsinki University of Technology (HUT) involves the design of an integrated circuit comprising a quantum computer prototype and its control - the first one to operate in a cold environment. This enables accurate and fast control, which is less vulnerable to disturbances than the present-day ’room temperature’ control. VTT will also build the integrated circuit, while the quantum bits will be constructed using nanotechnology (a millionth of a millimetre) techniques by the other top research teams involved in the project, including the CEA nuclear energy institute in France, the Chalmers University of Technology in Sweden and the IPHT Institute in Jena, Germany.

In connection with low-temperature quantum technology, VTT and HUT have developed a wholly new kind of charge pump. In theory, the pump has a capacity up to 1,000-fold (one nanoampere) higher than that of currently used pumps (one picoampere) without compromising accuracy. The pump developed at VTT may essentially facilitate the definition of the electro-technical current normal (current standard), in the international SI system of units, which in turn will facilitate the functional testing of industrial current meters. In addition, the new current standard is one of the three fundamental quantities in electrical engineering, and it may revolutionise the electro-technical foundation of the entire SI system.

The new pump and controlled control of the quantum computer are connected with the Doctoral dissertation of Antti Niskanen (26). The dissertation of the young VTT Research Scientist was examined at HUT on 26 November. Construction of the new control circuit at VTT is a continuation of Niskanen’s work. In 2005 Niskanen will join the quantum technology top research unit NEC in Japan as Visiting Researcher.

Antti Niskanen | alfa
Further information:
http://www.vtt.fi
http://www.vtt.fi/inf/pdf/publications/2004/P552.pdf

More articles from Physics and Astronomy:

nachricht Exotic spiraling electrons discovered by physicists
19.02.2019 | Rutgers University

nachricht Astronomers publish new sky map detecting hundreds of thousands of previously unknown galaxies
19.02.2019 | Universität Bielefeld

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

New therapeutic approach to combat African sleeping sickness

20.02.2019 | Life Sciences

Powering a pacemaker with a patient's heartbeat

20.02.2019 | Medical Engineering

The holy grail of nanowire production

20.02.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>