Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Control circuit for future supercomputer to be produced in Finland

08.12.2004


The circuit will improve the computational accuracy and efficiency of quantum computers operating at extremely low temperatures.



Quantum computers require an ambient temperature of approximately -273 degrees centigrade to function properly. The Technical Research Centre of Finland (VTT) is to build a control circuit for such a superconducting computer that will function at very low temperatures. Future quantum computers will be able to crack IT encryption codes and perform searches of enormous databases, which are currently impossible. The memory bits of a quantum computer may have several states simultaneously. This feature has enabled the few existing quantum computers, which although still primitive may yet achieve super efficiency in the future.

The high efficiency of a quantum computer facilitates computing far beyond the capacity of present-day equipment. For example, where current computers perform 1,000,000 searches in an unorganised database, quantum computers will perform approximately 1,000 searches, thus reducing the number by 1,000-fold. In the future the most extensive and complicated computing tasks can only be resolved with a quantum computer.


The cryogenic control circuit to be constructed at VTT will bring us one step closer to the speed and accuracy required of a quantum computer. The control circuits operate at just 0.02 degrees centigrade above absolute zero (- 273.15 degrees centigrade). Thus far quantum computers have been controlled at room temperature, which has prevented the full use of their incredible speed. In addition, unlike quantum computers, the memory bits of modern computers only have two alternative states.

The EU-funded project carried out by VTT and the Helsinki University of Technology (HUT) involves the design of an integrated circuit comprising a quantum computer prototype and its control - the first one to operate in a cold environment. This enables accurate and fast control, which is less vulnerable to disturbances than the present-day ’room temperature’ control. VTT will also build the integrated circuit, while the quantum bits will be constructed using nanotechnology (a millionth of a millimetre) techniques by the other top research teams involved in the project, including the CEA nuclear energy institute in France, the Chalmers University of Technology in Sweden and the IPHT Institute in Jena, Germany.

In connection with low-temperature quantum technology, VTT and HUT have developed a wholly new kind of charge pump. In theory, the pump has a capacity up to 1,000-fold (one nanoampere) higher than that of currently used pumps (one picoampere) without compromising accuracy. The pump developed at VTT may essentially facilitate the definition of the electro-technical current normal (current standard), in the international SI system of units, which in turn will facilitate the functional testing of industrial current meters. In addition, the new current standard is one of the three fundamental quantities in electrical engineering, and it may revolutionise the electro-technical foundation of the entire SI system.

The new pump and controlled control of the quantum computer are connected with the Doctoral dissertation of Antti Niskanen (26). The dissertation of the young VTT Research Scientist was examined at HUT on 26 November. Construction of the new control circuit at VTT is a continuation of Niskanen’s work. In 2005 Niskanen will join the quantum technology top research unit NEC in Japan as Visiting Researcher.

Antti Niskanen | alfa
Further information:
http://www.vtt.fi
http://www.vtt.fi/inf/pdf/publications/2004/P552.pdf

More articles from Physics and Astronomy:

nachricht What happens when we heat the atomic lattice of a magnet all of a sudden?
18.07.2018 | Forschungsverbund Berlin

nachricht Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
16.07.2018 | National Institutes of Natural Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>