Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Non Fire Yet But The Sensors Snap Into Action

07.12.2004


Russian researchers offer a fundamentally new approach to the development of gas sensors for fire-prevention detecting devices. In contrast to already known ones, these sensors allow to detect unerringly fire occurrence at its earliest stage. However, this is not a single advantage of the innovation or a sole field of application.



Moscow scientists - specialists of the Institute of Molecular Physics (Russian Research Center) “Kurchatov Institute” have managed to teach fire-prevention detecting devices to promptly and precisely catch the carbon monoxide occurrence in the air. The new device would not be deceived either by cigarette smoke, or by stange scents which sometimes make traditional fire alarm systems snap into action. No device in the world is equal to the new one in terms of sensitivity and selectivity.

Alexey Vasiliev, senior staff scientist, manager of work (Kurchatov Institute), narrated about new sensors at the international “Chemical sensors” conference, which took place in July in a Japanese “town of science” - Tsukuba - located not far from Tokyo.


The appearance of the sensors, the first experimental specimens of which were demonstrated by A.A. Vasiliev to all comers, had been preceded by extensive experimental and theoretical work. The authors suggested an absolutely new approach to development of sensors, the approach relating both to the sensors’ sensitive layer composition and their operating mode.

The point is that although the carbon oxide (CO - carbon monoxide) gas sensors have been known for quite a long time, their operation is not at all irreproachable. Principle of their operation is conventionally as follows: a layer of metal oxide, for example of tin or zinc, is the sensor. The determinate gas is sorbed on the oxide layer. Along with that, electroconductivity of the layer changes – it increases. That is the analytical response – the higher the conductivity of the sensitive layer gets, the higher the concentration of the sought gas is.

To increase the CO sensors selectivity, a catalyst – usually palladium – is introduced in the sensitive layer composition. When heated, the catalyst turns carbon monoxide into carbonic acid gas. This process, in its turn, affects the layer conductivity – therefore, these sensors are more sensitive, than the ones based simply on adsorption process.

The problem is that such sensors are easy to “deceive” – their readings are influenced by other gases as well, first of all by steam. And atmospheric humidity is known to be highly inconstant. That is why the fire safety systems are equipped with simplier sensors which are less sensitive but they snap into action “for sure” – when the room is already full of smoke or it is on fire, and the temperature exceeds all conceivable norms.

As for the sensors developed by the Moscow researchers, they would not be deceived either by steam or by any other gases, which impact the traditional sensors’ readings. The sensitive layer based on tin oxide with addition of palladium and platinum (the latter accelerates the process of carbon monoxide oxidation through to carbonic acid gas) allows to perform this process most efficiently.

The temperature condition suggested by the developers provides for two more invaluable advantages. Firstly, the sensor response increases particularly at the CO concentration being close to the maximum permissible concentration. Secondly, the researchers managed to select the temperature of operation in such a way that other gases on the catalyst simply do not have time to oxidize. Therefore, neither steam, nor hydrogen, nor methane or other carbohydrates “misleading” traditional sensors do affect the new sensors’ readings.

“Such sensors allow to detect occurrence of track concentrations of carbon monoxide at the initial stage of ignition, long before the fire appears as such, says Alexey Vasiliev. However, this is not their sole application. Sensors based on them may be used to identify the carbon monoxide concentration in motor exhausts.”

Sergey Komarov | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>