Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Listen, two black holes are clashing!’

26.11.2004


MiniGRAIL: first spherical gravitational wave antenna in the world

Since last week, Professor Giorgio Frossati of Leiden University’s Institute of Physics can ‘listen’ to gravitational waves. That is, if such a wave happens to come along. Gravitational waves originate from violent clashes between black holes in the universe and from instabilities in neutron stars.

MiniGRAIL is the name of the first spherical gravitational wave antenna in the world. The ball was made at the Leiden Institute of Physics (LION) of Leiden University. It is the product of years of close cooperation between Frossati’s research group and the technicians of the fine-mechanic and electronic workshop in the Institute. “A result to be proud of”, says Professor Peter Kes, LION’s scientific director.



The MiniGRAIL detector is made of copper with a pinch of aluminium (6%), has a diameter of 65 cm and weighs 1150 kilos. If a gravitational wave passes by the antenna, it will transmit a very small part of its energy to the ball. Gravity waves with a frequency of circa 3000 hertz will make the ball vibrate in all kinds of different ways.

Yet, these vibrations are very small, a billionth of a billionth part of a centimetre (10 -20 m), which makes them very difficult to measure. MiniGRAIL will have to attain a sensitivity good enough to detect these ultra-small vibrations. Astronomers predict that at the frequency and amplitude of such ultra-small vibrations various sources of gravitational waves can be measured, like clashes of black holes and instabilities in neutron stars.

In order to preclude false vibrations as much as possible, MiniGrail is built on vibration-free poles, and the ball is cooled down to ultra-low temperatures. At this moment the ball is 4 Kelvin, which is -269 degrees Celsius. This is as cold as it can get in the coldest corners of the universe. In a number of weeks the ball’s temperature will be decreased even more, to reach record depth, and then the scientific race will break loose: who in the world will be the first to measure gravitational waves?

The race will be between American teams, an Italian team and Frossati’s own team. Still, cooperation will be more important than competition. “You can never be sure you have measured a gravitational wave until you have compared notes with the other teams. Only if all of us, simultaneously, have a hit will we know that it was indeed a gravitational wave.”

Eppo Bruins | alfa
Further information:
http://www.nieuws.leidenuniv.nl/index.php3?m=&c=373
http://www.leidenuniv.nl

More articles from Physics and Astronomy:

nachricht Blue phosphorus -- mapped and measured for the first time
16.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

nachricht All in the family: Kin of gravitational wave source discovered
16.10.2018 | University of Maryland

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

 
Latest News

Unravelling the genetics of fungal fratricide

16.10.2018 | Life Sciences

Blue phosphorus -- mapped and measured for the first time

16.10.2018 | Physics and Astronomy

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>