Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designing an ultrasensitive ’optical nose’ for chemicals

11.11.2004


A laser-based method for identifying a single atom or molecule hidden among 10 trillion others soon may find its way from the laboratory to the real world.



Developed by physicists at the National Institute of Standards and Technology (NIST), the technique is believed to be more than 1,000 times more sensitive than conventional methods. Vescent Photonics of Denver, Colo., hopes to commercialize the method as an "optical nose" for atmospheric monitoring. The portable sensors would rapidly identify chemicals in a gas sample based on the frequencies of light they absorb. Other applications eventually may include detection of chemical weapons and land mines, patient breath analysis for medical diagnosis or monitoring, and industrial detection of leaks in subterranean pipes or storage tanks, the company says.

Vescent recently signed a Cooperative Research and Development Agreement with NIST. The company will work with NIST physicist Jun Ye (co-developer of the technology) to apply the public domain "optical nose" technique to detecting and quantifying trace quantities of atmospheric gases. Ye works at JILA, a joint institute of NIST and the University of Colorado at Boulder.


The technique is a product of years of work and several innovations by NIST scientists. A gas sample is placed in an optical cavity containing two highly reflective mirrors. An infrared laser beam is directed into the cavity, where the light bounces back and forth many times. The repeated reflections increase the path length on which laser light will interact with gas molecules in the sample. In addition, the laser frequency is quickly and systematically varied in a way that enables scientists to observe and subtract background noise from the signal.

The approach allows analysis of gases that are present in minute concentrations and at very low pressures, which may enable identification of compounds such as explosives that are difficult to detect by other means.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht A New Home for Optical Solitons
23.01.2019 | Max-Planck-Institut für Quantenoptik

nachricht Collision of individual atoms leads to twofold change of angular momentum
23.01.2019 | Technische Universität Kaiserslautern

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bifacial Stem Cells Produce Wood and Bast

Heidelberg researchers study one of the most important growth processes on Earth

So-called bifacial stem cells are responsible for one of the most critical growth processes on Earth – the formation of wood.

Im Focus: Energizing the immune system to eat cancer

Abramson Cancer Center study identifies method of priming macrophages to boost anti-tumor response

Immune cells called macrophages are supposed to serve and protect, but cancer has found ways to put them to sleep. Now researchers at the Abramson Cancer...

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

A New Home for Optical Solitons

23.01.2019 | Physics and Astronomy

Graphene and related materials safety: human health and the environment

23.01.2019 | Materials Sciences

Blood test shows promise for early detection of severe lung-transplant rejection

23.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>