Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fingerprints in the sky explained

09.11.2004


Today, a group of physicists published the most compact and elegant explanation of one of nature’s simplest phenomena: the way light behaves in the sky above us. This research appears today (Tuesday, 9th November) in the New Journal of Physics, published jointly by the Institute of Physics and Deutsche Physikalische Gesellschaft (German Physical Society).



Michael Berry and Mark Dennis from the University of Bristol, in collaboration with Raymond Lee of the US Naval Academy, have successfully predicted the patterns of polarisation of skylight, explained in broad outline by Lord Rayleigh in 1871, using elliptic integrals – a type of mathematics with deep geometrical roots, often described as “beautiful”.

The blue sky seen through polaroid sunglasses gets darker and brighter as the glasses are rotated. This reveals something almost invisible to our unaided eyes: daylight is polarized light. This means that the light waves vibrate differently in different directions. The effect is strongest at right angles to the sun, and weaker elsewhere. It creates patterns in the sky that look similar to the ridges in human fingerprints and are used by many species of birds and flying insects as an aid to navigation.


A striking feature of the pattern is a pair of points near the sun where the light is not polarized at all (this point is a singularity and the pattern breaks down here). Although they have been studied for nearly two centuries, no one attempted to construct a model using the most obvious feature - the singularities - until now.

Sir Michael Berry said: “We wondered: what if you start with the singularities and write the simplest description of polarisation that puts the singularities in the right places? We found that this gives a remarkably good fit to the observational data, and predicts the pattern across the whole sky.” “This is beautiful mathematics in the sky. Using elliptic integrals, we’ve been able to replace pages and pages of formulae with one very simple solution that predicts the pattern extremely well” “After almost 200 years there’s now a way of understanding this natural phenomenon which is very different from previous models, but utterly natural. It’s a modern theme of physics to study things by looking at their singularities – to think about them geometrically.”

In order to test their theory, co-author Raymond Lee took four different polarized photographs of each of two clear-sky cases at the United States Naval Academy in Annapolis, Maryland, using a Nikon digital camera with a specially converted fisheye lens. When they compared these detailed observations to the pattern predicted by their model, they found that the fit was very good, indicating that the arrangement of the singularities could be vital in shaping the overall “fingerprint in the sky”.

Many scientists and mathematicians believe that simple, concise explanations of natural phenomena are better or closer to some underlying truth than more complex ones. Professor Marcus du Sautoy, from the Mathematical Institute at the University of Oxford, said: “Having a sense of beauty and aesthetics is an important part of being a scientist. Nature seems to be a believer in Occam’s Razor: given a choice between something messy or a beautiful solution, Nature invariably goes for beauty.

"This is why those scientists with an eye for aesthetics are often better equipped for discovering the way Nature works. We might find a complicated ugly solution but that is probably a sign that we haven’t yet found the best explanation. The fact that there is so much beauty at the heart of Nature is what gives scientists a constant sense of wonder and excitement about their subject.”

David Reid | alfa
Further information:
http://www.iop.org
http://www.njp.org

More articles from Physics and Astronomy:

nachricht JILA researchers make coldest quantum gas of molecules
22.02.2019 | National Institute of Standards and Technology (NIST)

nachricht (Re)solving the jet/cocoon riddle of a gravitational wave event
22.02.2019 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>