Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Los Alamos instrument yields new knowledge of Saturn’s rings

14.10.2004


University of California scientists working at Los Alamos National Laboratory have begun to analyze data from an instrument aboard the joint U.S.-European spacecraft Cassini. Although Cassini has only been orbiting the planet Saturn since July 1, data from the Cassini Plasma Spectrometer (CAPS) has already begun to provide new information about the curious nature of Saturn’s space environment.



CAPS had been detecting advance readings for several days before Cassini finally crossed the bow shock that exists in the solar wind ahead of the magnetosphere, a huge magnetic field bubble produced in the solar wind by Saturn’s strong magnetic field. On June 28, the spacecraft entered into the magnetosphere itself and began taking data. From this very preliminary set of measurements, it is apparent that the outer reaches of Saturn’s magnetosphere are probably populated by plasma captured from the solar wind, but closer to the planet the plasma comes primarily from the rings and/or the inner icy satellites.

According to Michelle Thomsen, the current Los Alamos CAPS project leader, "After many years of design, development and testing, and then the seven-year journey across the solar system, CAPS is finally doing the job it was built to do. We are quickly learning much, but I think we have only begun to understand what CAPS can teach us about Saturn and its space environment over the next few years."


CAPS consists of three separate analyzers designed to measure the electrically charged particles trapped within Saturn’s magnetosphere. Los Alamos played a major role in the design and construction of two of them: an ion mass spectrometer (IMS), which incorporates a novel design developed at Los Alamos to identify the different atomic species in Saturn’s magnetospheric plasma, and an ion beam spectrometer (IBS), which is based on a design used by Los Alamos scientists on several previous solar wind research missions.

During Cassini’s first brief pass over Saturn’s rings, CAPS identified a previously unknown low-energy plasma trapped on the magnetic field lines threading the Cassini Division, the name given to the gap between the main A and B rings. With the four-year mission just beginning, including more than 70 orbits of the planet, CAPS is poised to provide scientists with a new level of understanding about Saturn’s space environment, as well as clues about some of the space physics processes that operate more universally in the solar system.

The CAPS team involves scientists and engineers from 14 institutions and six countries, including Dave Young, the Principal CAPS Investigator at the Southwest Research Institute in San Antonio, Texas. At Los Alamos, the CAPS effort was made possible by the work of numerous members of International, Space and Response Division and its predecessor organizations. The IMS was designed by Los Alamos staff member Beth Nordholt and former staff member Dave McComas. In addition to Thomsen, current members of the team include Bruce Barraclough (lead investigator for the IBS), Dot Delapp, Jack Gosling, Dan Reisenfeld, John Steinberg, Bob Tokar and summer student Brian Fish.

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos enhances global security by ensuring the safety and reliability of the U.S. nuclear deterrent, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to defense, energy, environment, infrastructure, health and national security concerns.

Todd Hanson | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Physics and Astronomy:

nachricht Electrons use the zebra crossing
17.12.2018 | Universität Stuttgart

nachricht Data storage using individual molecules
17.12.2018 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>