Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atacama rover helps NASA learn to search for life on Mars

28.09.2004


A dedicated team of scientists is spending the next four weeks in northern Chile’s Atacama Desert. They are studying the scarce life that exists there and, in the process, helping NASA learn more about how primitive life forms could exist on Mars.

The NASA-funded researchers are studying the Atacama Desert, described as the most arid region on Earth, to understand the desert as a habitat that represents one of the limits of life on Earth. The project, part of NASA’s Astrobiology Science and Technology Program for Exploring Planets, involves technology experiments to test robotic capabilities for mobility, autonomy and science.

"Identifying living microorganisms and/or fossils in environments where life’s density is among the lowest on the planet should provide leads to establish detection criteria and strategies for Mars or other planetary bodies," explained Dr. Nathalie Cabrol of the SETI Institute, Mountain View, Calif., and NASA Ames Research Center, located in California’s Silicon Valley. She is the project science lead and co-investigator on the "Life in the Atacama" project.



Scientists from Ames, Carnegie Mellon University, Pittsburgh, the University of Tennessee, Knoxville, and the Universidad Catolica del Norte, Antofagasta, Chile, are participating in the study. Scientists are scheduled to conduct their investigation and field experiments in the Atacama through Oct. 21.

They are using Zoe, an autonomous, solar-powered rover developed by researchers at Carnegie Mellon’s Robotics Institute. During the mission, Zoe is expected to travel about two kilometers (1.24 miles) daily and provide panoramic and close-up images. Zoe will employ a variety of other scientific instruments to explore the remote desert. The instruments include a visible-to-near-infrared spectrometer and a fluorescence microscopic imager developed by Carnegie Mellon’s Molecular Biosensor and Imaging Center.

"Our goal is to make genuine discoveries about life and habitats in the Atacama and to create technologies and methods that can be applied to future NASA missions," said David Wettergreen, an associate research professor at Carnegie Mellon’s Robotics Institute. He is leading robotics research for the Life in the Atacama project.

The first phase of the project began in 2003, when a solar-powered robot named Hyperion, also developed at Carnegie Mellon, was taken to the Atacama. Scientists conducted experiments with Hyperion to determine the optimum design, software and instrumentation for a robot for extensive investigations during 2004-05 of desert life. Zoe and its instrument payload are the result of the first year’s research.

"The project is going a step further by trying to understand if signatures of microbial life can be unambiguously detected remotely using a robotic platform," Cabrol said. "These robots and science payloads will be a wonderful precursor to human exploration and excellent ’astronaut/astrobiology assistants’ when the time comes for human missions," she added.

Scientists also plan to map the habitats of the area, including its morphology, geology, mineralogy, texture, physical and elemental properties of rocks and soils; document how life modifies its environment; characterize the geo- and biosignatures of microbial organisms and draft science protocols to support a discovery of life. Ames scientist Chris McKay is conducting a long-term ecological study of the Atacama as a Mars analog environment.

Scientists using EventScope, a remote experience browser developed by researchers at Carnegie Mellon’s Studio for Creative Inquiry, will guide Zoe. EventScope enables scientists to experience the Atacama environment through the eyes and various sensors of the rover. The public can access the same kind of data experienced by scientists by downloading the EventScope interface from the Internet at: http://www.eventscope.org/atacama

Lauren Ward | EurekAlert!
Further information:
http://www.cmu.edu
http://www.eventscope.org/atacama
http://www.frc.ri.cmu.edu/atacama

More articles from Physics and Astronomy:

nachricht Unraveling the nature of 'whistlers' from space in the lab
15.08.2018 | American Institute of Physics

nachricht Early opaque universe linked to galaxy scarcity
15.08.2018 | University of California - Riverside

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>