Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK astronomers use Hubble’s most sensitive image of the Universe to find extremely distant star forming galaxies

24.09.2004


The recently released Hubble Space Telescope Ultra Deep Field (HUDF) - the most sensitive image of the distant universe ever obtained - has provided UK astronomers with a window on star formation when the universe was young, revealing some of the earliest star forming galaxies yet detected.

The research was led by Dr Andrew Bunker at the University of Exeter and graduate student Elizabeth Stanway at the Institute of Astronomy at Cambridge University. Their results have been accepted for publication in the journal ’Monthly Notices of the Royal Astronomical Society’.

This UK team was the first to analyse the Ultra Deep Field images, generating their results within a day of the data becoming available. Their work has been confirmed by other groups researching in the field, and is the subject of a NASA press conference at the Space Telescope Science Institute, Baltimore today (23 September 2004).



Bunker and colleagues identified fifty objects likely to be galaxies from the HUDF data that looked 95 per cent of the way back to the beginning of the Universe. The redshifts of these galaxies are about 6 - so far away that light from them has taken 13 billion years to reach us. This is more than twice the age of our Solar System, and the galaxies which the UK team have discovered existed when the universe was less than a billion years old. "Intervening gas clouds absorbed visible light from these galaxies long before it reached Earth, but their infrared light can be detected," explained Elizabeth Stanway, "and it is their infrared colours which lead us to believe that these galaxies lie at such immense distances."

The astronomers turned to two of the largest telescopes in the world, the 10-metre Keck telescope, in Hawaii, and the 8-metre Gemini telescope in Chile to verify their findings with spectroscopic techniques. In some of these spectra they saw the hydrogen gas glowing as it was illuminated by hot, newly-born stars. "These galaxies are in the process of giving birth to stars - each year they convert a mass of gas more than that of our sun into new stars," said Professor Richard Ellis of the California Institute of Technology.

"Using the largest optical telescope, Keck, was very important as it showed that this population of objects discovered by the Hubble Space Telescope really are incredibly distant", added Andrew Bunker, who was also part of the team which did the observing in Hawaii.
But these discoveries pose a cosmic puzzle: on the basis of their sample, the UK team can calculate how fast stars are being born in distant galaxies at redshift 6. They have compared the answer with previous work looking at nearer galaxies, with redshifts around 3. "It seems that there are fewer of these galaxies early in the history of the Universe at redshift 6, compared to more recent times," said Andrew Bunker.

Richard McMahon, another of the Cambridge team, explained the importance of exploring these high redshifts: "At this early time in the history of the universe, a major phase change occurred. The space between galaxies was filled with largely neutral gas, but suddenly this was ionised - forming a plasma." The main candidate for what caused this is ultraviolet radiation, which can be generated as stars are born. Yet, the small number of star forming galaxies found in the Ultra Deep Field may not be sufficient to do this.

It is possible that the first stars and galaxies were born at even earlier times, and this will be explored by the successor to Hubble, the James Webb Space Telescope, which will operate in the infrared.

Julia Maddock | alfa
Further information:
http://www.pparc.ac.uk

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>