A simpler design for x-ray detectors

A simplified design for ultra-sensitive X-ray detectors offering more precise materials analysis has been demonstrated at the National Institute of Standards and Technology (NIST). The advance is a step toward making such devices cheaper and easier to produce. Users may eventually include the semiconductor industry, which needs better X-ray detectors to identify and distinguish between nanoscale contaminant particles on silicon wafers.

The new design, described in the Sept. 13 issue of Applied Physics Letters,* is among the latest advances in a decade of NIST research on superconducting “transition edge” sensors (TES). These cryogenic sensors absorb individual X-rays, and then measure the energy of the X-ray by measuring the resulting rise in temperature. The temperature is measured with a bilayer of normal metal and superconducting metal that changes from zero resistance (superconducting) to a slight resistance level in response to the heat from the radiation. By measuring the X-ray energy, NIST researchers can identify the X-ray “fingerprints” of particular elements.

NIST researchers have built systems offering 30 times better X-ray energy resolution than detectors now used in the semiconductor industry and are pursuing further improvements such as novel detector geometries and materials. In contrast to the usual bilayer TES design, the sensor described in the APL paper combines the normal and superconducting metals into one homogenous layer. Manganese impurities are added to a 400-nanometer-thick aluminum film to lower its superconducting transition temperature to 100 milliKelvin. Fabrication requires about half as many steps as the bilayer design. In addition, the new design exhibits less “noise” in the X-ray signals than is typical for TES sensors, as well as a low sensitivity to magnetic fields that could help in building stable instruments.

Media Contact

Laura Ost EurekAlert!

More Information:

http://www.nist.gov

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors