Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lighting the way to better nanoscale films

31.08.2004


Most miniature electronic, optical and micromechanical devices are made from expensive semiconductor or ceramic materials. For some applications like diagnostic lab-on-a-chip devices, thin-film polymers may provide a cheaper alternative, but the structure and properties of these materials—-often no more than a few nanometers (nm) thick—-are difficult to determine. In addition, defects in the thin polymer masking materials used to "print" integrated circuits can produce malfunctioning components. Consequently, researchers would like to have a non-invasive method for scanning polymer films for defects at high resolution.


Left: The crystal structure of a thin-film polymer "seaweed" crystal that is about four micrometers wide. Brighter areas indicate parts of the crystal with the greatest "strain." Center: The same crystal with lines superimposed showing the direction of strain between the crystal’s atoms. Right: Closeup of the upper left portion of the center image.



In the Aug. 23 issue of Applied Physics Letters,* researchers at the National Institute of Standards and Technology (NIST) report on an application of a new method for studying ultrathin polymers that makes it possible to visualize defects and structure in these materials and should help improve basic understanding of crystal formation in polymers.

Using a special form of near-field scanning optical microscopy, the NIST researchers were able to determine the structure of, and "strain" (stretching between atoms) in, thin-film crystals of polystyrene. Polystyrene is a ubiquitous plastic found in foam cups, CD cases and many other products.


The films examined formed tiny crystals just 15 nm thick and about 1500 nanometers wide, which makes them difficult to study with other optical microscopes. In the NIST experiments, blue-green light was piped through a glass fiber about 50 nm wide and scanned across the sample about 10 nm above the surface. Changes in the polarization of the light (the direction of the wave’s electric field) as it transmits through the sample then were used to investigate the material’s crystal structure and to map areas of strain.

The NIST results should help scientists choose and improve polymer materials and processes for fabricating a range of microscale and nanoscale plastic devices.

Gail Porter | EurekAlert!
Further information:
http://www.nist.gov

More articles from Physics and Astronomy:

nachricht Smallest transistor worldwide switches current with a single atom in solid electrolyte
17.08.2018 | Karlsruher Institut für Technologie (KIT)

nachricht Protecting the power grid: Advanced plasma switch for more efficient transmission
17.08.2018 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>