Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Periodic Dimming Of Bright Starlight Reveals Distant Planet

25.08.2004


Using a network of small telescopes and the "transit method" of detection, scientists have made their first direct discovery of a planet orbiting a bright star. A periodic dimming of light from a bright star 500 light-years away revealed the planet’s presence. The star’s intense light will allow scientists to explore the chemical makeup of the planet’s atmosphere in future observations. A paper on the recent discovery will appear on-line today in The Astrophysical Journal Letters.


Periodic dimming of bright starlight reveals distant planet. Credit: David A. Aguilar, Harvard-Smithsonian Center for Astrophysics



"This effort further develops the ’transit method’ and lays the groundwork for more research into the composition of the atmospheres surrounding planets outside our solar system," said Cliff Jacobs, program director in NSF’s division of atmospheric sciences, which funded the discovery. The research is co-funded by NASA. "In this age of mega-astronomical observing tools, it’s amazing that this discovery resulted from modest observing instruments."

This is the first extrasolar planet discovery made by a dedicated survey of thousands of relatively bright stars in large regions of the sky. It is also the first using the Trans-Atlantic Exoplanet Survey (TrES, pronounced "trace"), a network of small, relatively inexpensive telescopes designed to look specifically for planets orbiting bright stars. The telescopes make use of the transit technique, in which scientists analyze the shadow cast by a planet as it passes between its star and Earth.


The discovery team includes scientists from the Astrophysical Institute of the Canaries (IAC), National Center for Atmospheric Research (NCAR), Harvard-Smithsonian Center for Astrophysics (CfA), Lowell Observatory, and California Institute of Technology.

A team of scientists led by Timothy Brown (NCAR), David Charbonneau (CfA) and Edward Dunham (Lowell Observatory) developed the TrES network. Brown built the optical system of the telescope used in the discovery and located on Tenerife in the Canary Islands. Roi Alonso Sobrino of the IAC discovered the planet, called TrES-1, after three years of persistent planet hunting.

"The fact that we can learn anything at all about a planet 500 light-years away is astonishing," says Brown. "It’s almost paradoxical that, with the transit method, small telescopes are more efficient than the largest ones, in a time when astronomers are planning 100-meter telescopes," says Alonso.

Of the approximately 12,000 stars examined by the TrES survey, Alonso identified 16 possible candidates for planet transits. "The TrES survey gave us our initial lineup of suspects. Then, we made follow-up observations to eliminate the imposters," says co-author Alessandro Sozzetti (CfA/University of Pittsburgh).

Within two months, the team had zeroed in on the most promising candidate. Observations by Torres and Sozzetti using the 10-meter-diameter Keck I telescope in Hawaii clinched the case. "Without this follow-up work the photometric [brightness] surveys can’t tell which of their candidates are actually planets. The proof in the pudding is a spectroscopic orbit [using the Doppler method] for the parent star. That’s why the Keck observations of this star were so important in proving that we had found a true planetary system," says co-author David Latham (CfA).

Only now has the transit method resulted in a discovery involving a Jupiter-size planet circling a bright star. The success of the transit method opens the possibility of directly determining key information about the planet, such as its mass and radius (size), and its atmospheric components.

Cheryl Dybas | NSF_News
Further information:
http://www.nsf.gov

More articles from Physics and Astronomy:

nachricht Astronomers see 'warm' glow of Uranus's rings
21.06.2019 | University of California - Berkeley

nachricht A new force for optical tweezers awakens
19.06.2019 | University of Gothenburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Cooling with the sun

25.06.2019 | Power and Electrical Engineering

Robocabs: The mobility of the future?

25.06.2019 | Studies and Analyses

Skipping Meat on Occasion May Protect Against Type 2 Diabetes

25.06.2019 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>