Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluorescing "Artificial Atoms" Could Have Applications in Biological Labeling

25.08.2004


A new class of water-soluble quantum dots made from small numbers of gold atoms could be the basis for a new biological labeling system with narrower excitation spectra, smaller particle size and fluorescence comparable to systems based on semiconductor quantum dots.

Providing the “missing link” between atomic and nanoparticle behavior in noble metals, these multi-electron “artificial atoms” could also serve as light-emitting sources in nanoscale optoelectronics and in energy transfer pairs. “We have discovered a new class of quantum dots that are water soluble, strongly fluorescent, and display discrete excitation and emission spectra that make them potentially very useful for biological labeling,” said Robert Dickson, associate professor in the School of Chemistry and Biochemistry at the Georgia Institute of Technology. “Their potential applications are really complementary to those of semiconductor quantum dots.”

The gold nanodots are made up of 5, 8, 13, 23 or 31 atoms, each size fluorescing at a different wavelength to produce ultraviolet, blue, green, red and infrared emissions, respectively. The fluorescence energy varies according to the radius of the quantum dot, with the smallest structures the most efficient at light emission.



In contrast, quantum dots made from semiconductors such as cadmium selenide are much larger, containing hundreds or thousands of atoms. Semiconductor quantum dots obey different size scaling under confinement, producing weaker emissions.

The gold quantum dots were reported August 13 in the journal Physical Review Letters, and highlighted on the journal cover. Additional information on the work will be presented August 23rd at the 228th national meeting of the American Chemical Society in Philadelphia, PA. The work was sponsored by the National Science Foundation, National Institutes of Health, Sloan and Dreyfus Foundations, Blanchard and Vassar Woolley Endowments and the Georgia Tech Center for Advanced Research in Optical Microscopy.

In addition to Dickson, the research team includes Professor Yih Ling Tzeng of Emory University; Jie Zheng, Lynn Capadona and Caiwei Zhang of Georgia Tech, and Jeffrey Petty of Furman University.

Because of their narrow excitation spectra and small physical size, the gold quantum dots could be particularly useful in fluorescence resonance energy transfer (FRET) systems, in which emission from one nanodot would be used to excite another as a means of measuring proximity.

The broad excitation spectra of semiconductor quantum dots and their larger size make them more difficult to use in FRET-based research, Dickson noted. By using poly-amidoamine (PAMAM) dendrimers to encapsulate their gold clusters, the researchers produced quantum dots with very clean mass spectra. The 8-atom cluster, for instance, produces bright blue emission and fluorescence quantum yields of 42 percent in an aqueous solution.

The researchers produce the nearly spectrally pure, size-tunable gold nanodots through a slow reduction of gold salts (HAuCl4 or AuBr3) within aqueous PAMAM solutions, followed by centrifugation to remove large nanoparticles. By controlling the relative concentration of gold to PAMAM and the generation of the dendrimers, the researchers can control nanocluster size – and therefore the emission wavelengths. “Nanodots encapsulated through PAMAM exhibit higher fluorescence quantum yields than do clusters encapsulated by other matrices, suggesting an important role for amines in gold nanodot creation,” Dickson noted.

The nanodot solutions are stable, lasting for months either in solution or as dried powders. Solutions from re-dissolved nanodot powders have the same properties as when they were originally created.

Dickson’s research group has been working with fluorescent and electroluminescent silver nanoclusters for several years, evaluating their use in optical computing and other applications. While silver quantum dots offer promise because of their strong emission, their narrower size range (2-8 atoms) makes them difficult to separate to create solutions with distinct emission spectra.

“Silver fluoresces very strongly and it has awesome optical properties, even better than gold because it has very short lifetimes and high quantum yields,” Dickson said. “But it is more difficult for us to separate them to get high concentrations of pure samples. Right now the scalings are much clearer and more easily understood in gold, so we will take what we’ve learned there and ultimately apply it to silver.”

Before these gold quantum dots can be useful in biological labeling, however, the researchers must develop a mechanism for attaching them to proteins that scientists wish to track in cells. “We are continuing to investigate these quantum dots, to probe their fundamental photophysical and spectroscopic properties, and to develop different chemistries for functionalizing the scaffolding that encapsulates the nanoclusters so we can attach them to other molecules,” Dickson noted.

Much of that work will be done with newly obtained support from the National Institutes of Health, which has funded a Roadmap Initiative Center in High Resolution Cellular Imaging to a team of Georgia Tech chemists and Prof. Tzeng at Emory University. “We will need to determine ways to functionalize these quantum dots so they will get across cell membranes, seek out specific proteins inside a cell and label those proteins,” explained Dickson. “We are basically developing the tools for in-vivo, single-molecule sensitivity and labeling in living systems in the presence of very high backgrounds. We expect to produce a new set of probes that will be size-tunable, non-toxic and very bright.”

Beyond the potential applications, studying the gold clusters provides basic information about the properties of small clusters of noble metals, how they share conduction electrons, and how they fluoresce under quantum confinement. “They can help us understand the very small size scale that is really not well understood for noble metals,” Dickson added. “They can provide the ‘missing link’ between atomic and nanoparticle behavior in these metals.”

| newswise
Further information:
http://www.gatech.edu
http://www.gtresearchnews.gatech.edu

More articles from Physics and Astronomy:

nachricht Searching for disappeared anti-matter: A successful start to measurements with Belle II
26.03.2019 | Max Planck Institute for Physics

nachricht Extremely accurate measurements of atom states for quantum computing
26.03.2019 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New gene potentially involved in metastasis identified

Gene named after Roman goddess Minerva as immune cells get stuck in the fruit fly’s head

Cancers that display a specific combination of sugars, called T-antigen, are more likely to spread through the body and kill a patient. However, what regulates...

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Searching for disappeared anti-matter: A successful start to measurements with Belle II

26.03.2019 | Physics and Astronomy

Extremely accurate measurements of atom states for quantum computing

26.03.2019 | Physics and Astronomy

Listening to the quantum vacuum

26.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>