Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cooking on a comet...?

20.08.2004


One of the ingenious instruments on board Rosetta is designed to ’smell’ the comet for different substances, analysing samples that have been ’cooked’ in a set of miniature ovens.



ESA’s Rosetta will be the first space mission ever to land on a comet. After its lander reaches Comet 67P/Churyumov-Gerasimenko, the main spacecraft will follow the comet for many months as it heads towards the Sun. Rosetta’s task is to study comets, which are considered the primitive building blocks of the Solar System. This will help us to understand if life on Earth began with the help of ’comet seeding’.

The Ptolemy instrument is an ’Evolved Gas Analyser’, the first example of a new concept in space instruments, devised to tackle the challenge of analysing substances ’on location’ on bodies in our Solar System.


Weighing just 4.5 kilograms and about the size of a shoe box, it was produced by a collaboration of the UK’s Rutherford Appleton Laboratory and Open University.

The analysis of these samples from the surface of the comet will establish what the cometary nucleus is made from, providing valuable information about these most primitive objects.

After the lander touches down on the comet, the Ptolemy instrument will collect comet nucleus material, believed to be a frozen mixture of ices, dust and tar, using the Sampling, Drilling and Distribution system (SD2) supplied by Tecnospazio Milano of Italy. SD2 will drill for small cores of ice and dust from depths of down to 250 millimetres.

Samples collected in this way will be delivered to one of four tiny ’ovens’ dedicated to Ptolemy, which are mounted on a circular, rotatable carousel. The German-supplied carousel has 32 of these ovens, with the remainder being used by other Rosetta instruments.

Of the four Ptolemy ovens, three are for solid samples collected and delivered by SD2 while the fourth will be used to collect volatile materials from the near-surface cometary atmosphere. By heating the solid samples to 800 °C, the oven converts them into gases which then pass along a pipe into Ptolemy. The gas will then be separated into its constituent chemical species using a gas chromatograph.

Ptolemy can then determine which chemicals are present in the comet sample, and hence help to build up a detailed picture of what the comet is made from.

It does this using the world’s smallest ’ion-trap mass spectrometer’, a small, low-power device built with the latest miniature technology. This device will find out what gases are present in any particular sample and measure stable isotope ratios.

Roberto Lo Verde | EurekAlert!
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Original kilogram replaced -- new International System of Units (SI) entered into force
22.05.2019 | Forschungsverbund Berlin

nachricht Stellar waltz with dramatic ending
22.05.2019 | University of Bonn

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>