Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mathematical model for the vibrato

18.08.2004


As her PhD defended at the Public University of Navarre, telecommunications engineer Ixone Arroabarren has analysed the vibrato, one of the most important tools of classical singers.



The study applies both to the teaching of singing in music as well as to the medical treatment of voice pathologies. It has put forward a mathematical model for the production of the voice that can be used both in the medical study/detection of pathologies of the vocal chords and speech as well as the teaching of the art of singing. This PhD has been developed within the framework of the research project awarded by CEIN as the best Project for the Transference of Research Result.

Amongst these differences, the engineer points out, that the vibrato is an exclusively musical characteristic which is of great use to the classical singer because, on the one hand, it enables the unmasking of possible off-key notes and, on the other, it makes sure the listener does not have the sensation that they are listening to the same sound. Furthermore, the theme itself has been of great interest to many researchers in areas such as physiology and musicology.


From an acoustic perspective, the vibrato in classical singing can be defined as a regular fluctuation in the fundamental frequency of the pitch or signal, the timbre and/or the volume of a single note. Nevertheless, the origin of these variations and their relation with mechanisms of voice production are still enigmatic.

Ixone Arroabarren’s thesis studies this theme in depth with aim of carrying out a complete characterisation of the vibrato in the art of classical singing, starting from the measuring and the performance of its most relevant acoustic characteristics, and ending with an analysis of its origin and relation to the mechanisms of voice production. In brief, what we are doing is to relate what we perceive acoustically what is generated physiologically. In this way, we offer an explanation of the collateral effects which we knew were there but the exact origin of which was unknown.

To carry out this study a number of Signal Processing tools have been used - “the most suitable in each case, given that the overall study of the vibrato has implicitly involved the resolution of very different problems, from calculating the instantaneous frequency of non-stationary signals to estimating the source by means of Inverse Filtering.

As an end result of the researcher’s study, she puts forward a mathematical model of voice production that can be used both for the study and medical treatment of vocal chord and speech pathologies as well as for learning the art of singing.

This model of vibrato production has permitted relating the most important acoustic characteristics - fundamental frequency, timbre and volume, with the most relevant elements in voice production at the level of acoustics, glottal source and response of the vocal tract. In this way we have demonstrated that the features of both elements do not show substantial changes during vibrato, only the fundamental frequency of the glottal excitation varying.

All this enables two models of signal production of the vibrato to be put forward. A Non-Interactive Model of Vibrato Production, has enabled relating the most important acoustic characteristics – variations in fundamental frequency, timbre and volume, with and Response of Vocal Tract elements in voice production. With this it has been shown that variations in fundamental frequency generated in the Glottal Source are the cause of the variations in timbre and volume, dependant on both elements of voice production.

Besides, there is an Interactive Model of Vibrato Production, which enables us to state that the variations in amplitude and frequency of the harmonics of the acoustic signal can be used to obtain more information about the mechanisms of voice production. Moreover, this model admits the inclusion of additional effects, such as synchronic variations of the Response of the Vocal Tract, which may be related to similar effects identified by other authors through physiological studies.

Garazi Andonegi | alfa
Further information:
http://www.elhuyar.com

More articles from Physics and Astronomy:

nachricht Beyond the brim, Sombrero Galaxy's halo suggests turbulent past
21.02.2020 | NASA/Goddard Space Flight Center

nachricht 10,000 times faster calculations of many-body quantum dynamics possible
21.02.2020 | Christian-Albrechts-Universität zu Kiel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>