Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Twinkle, twinkle little star, how I wonder where you are

05.08.2004


Whether viewed dimly through the haze and lights of a city or in all their glory in a pristine wilderness, the stars that surround the Earth are magnificent, and one day Earthlings will travel to some of the new planets that astronomers are locating. However, the stars we see are not necessarily where we think they are, according to an international research team.



"We know that the light from distant stars takes a very long time to reach the Earth," says Dr. Akhlesh Lakhtakia, distinguished professor of engineering science and mechanics, Penn State. "But, taking into account the distance a star will have moved while that light travels, we still may not be able to accurately locate the star.

Negative phase velocity media or materials with negative refractive index may be responsible for this locational uncertainty. Recently, materials researchers at the University of California San Diego, working with micro and nano materials, developed a metamaterial that had a negative refractive index for microwaves, proving that negative phase materials could exist at least in the microwave part of the electromagnetic spectrum. Their requirements for this material were that both the relative permittivity, a measure of the charge separation in a material, and the relative permeability, a measure of how electrons loop in materials, of a substance must be less than zero.


While the implications for negative phase velocity media in the nano world are the creation of a perfect lens, a lens with no distortion with applications for optical transmission devices, CDs, DVDs, microwave systems, etc., in the universe at large, these media can disguise the location of a star, according to the researchers.

A material with negative index of refraction transmits light or other wave energy differently than one with positive index of refraction. In all natural materials, when an energy beam Ð light, radar, microwave Ð passes through water or glass or some other material, the beam is displaced in the same direction. The amount of displacement depends upon how much the material slows the speed of the beam. In negative phase velocity media, the displacement is in the opposite direction.

Lakhtakia and Tom. G. Mackay, lecturer in Mathematics, University of Edinburgh decided to look at why the permittivity and permeability had to be less than zero. They found that one or both permeability and permittivity could be less than zero and negative phase velocity would occur. They then found that both could be greater than zero and a negative index of refraction would occur but only when special relativity came into play.

The researchers looked at transmission through space, where high velocities are common.

"First I did the derivations with the observer moving and the energy source stationary," says Lakhtakia. " Then Mackay did the derivations with the observer stationary and the light source moving."

What they found was that it depends on the state of the observer whether any particular media at any time has negative or positive index of refraction. The relative velocity of the observer changes the index of any material.

"Light coming off a stellar object passes through many different regions of space filled with different media and is affected by different gravitational fields," says Lakhtakia. "When we finally see it, we cannot really know where it originated."

While this may be of no consequence today, Lakhtakia believes it has important implications for when space travel is common. Because this is a direction dependent effect, it will change the telemetry of objects and spacecraft.

"The business of space navigation and interpreting star maps could be a lot more complicated than we now think it is," says Lakhtakia. "Imagine mining of extrasolar asteroids. We might not want to send humans to do the mining, but robots would have to know where the asteroid is and where on its surface to mine when it left our solar system."

Calculations would need to be made from Earth on an asteroid that might not be where we visually see it. The effects of negative phase velocity media would need to be taken into consideration.

Another problem would be navigating from somewhere far away from the Earth in a space ship using information gathered from the Earth. Depending on the velocity of the spacecraft and the object aimed for, negative phase velocity media between the spacecraft and the destination would also need to be considered.

Vicki Fong | EurekAlert!
Further information:
http://www.psu.edu

More articles from Physics and Astronomy:

nachricht Extremely close look at electron advances frontiers in particle physics
19.10.2018 | National Science Foundation

nachricht Blue phosphorus -- mapped and measured for the first time
16.10.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Mineral discoveries in the Galapagos Islands pose a puzzle as to their formation and origin

19.10.2018 | Earth Sciences

Less animal experiments on the horizon: Multi-organ chip awarded

19.10.2018 | Life Sciences

New method uses just a drop of blood to monitor lung cancer treatment

19.10.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>