Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fire on the "Vomit Comet"

16.07.2004


Twin flames burning gaseous and solid fuel pellets exhibit different chemical processes on earth and in the near zero-gravity environment of space.


Tiny pellets of fuel may be safer for hazardous places on earth and burn more efficiently in weightless space and low-gravity environments

Researchers from the USC Viterbi School of Engineering say solid fuel particles may be safer for hazardous environments on earth and burn more efficiently in the microgravity of space than gaseous fuels, which are more combustible and difficult to transport.

In the Spring 2004 issue of NASA Space Research, Fokion Egolfopoulos and Charles Campbell, of the Viterbi School’s Department of Aerospace and Mechanical Engineering, report that they have made significant progress toward understanding the complex chemical processes that take place when tiny particles of solid fuels burn.



Their findings could lead to the design of safer and more efficient solid fuels for propulsion in space or for maintaining human outposts on the moon or Mars. Their research could also benefit fire-prevention practices.

“Understanding the thermal effects is a first step toward improving fuel economy in both space vehicles and those we use on Earth,” said Egolfopoulos. “It’s also a good start towards preventing spontaneous combustion in dangerous work environments, like in lumber milling, in grain elevators or in mine galleries. It ’ s a sort of walk-before-you-run kind of thing.”

Funded by NASA, the researchers made detailed studies of solid fuel combustion, including the effects of gravity on the process. They measured the burning characteristics of various solid fuel particles on earth and in microgravity, using NASA’s KC-135 aircraft — known as the “Vomit Comet” — to simulate the weightlessness of space.

“ It takes some getting used to, but after a while, you learn to conduct the experiment very precisely, ” said Mustafa Gurhan Andac, a post-doctoral research associate from the Viterbi School’s Combustion and Fuels Laboratory, who ran the experiments in the nearly weightless environment aboard the NASA aircraft. “ You only have about 23 seconds in zero-g, so you have to ignite the flame before the zero-g parabola starts and be sure to finish the experiment and record the data during those precious seconds of weightlessness. ”
In their experiments, the team used two laminar, smooth-burning flames in an “opposed-jet” configuration (see photograph) to compare the consumption of solid fuel and gaseous fuel. The bottom burner slowly spews gas to carry solid fuel pellets to the flame, while the top burner issues particle-free gas to fuel the flame.

“Depending on the prevailing flow conditions, and characteristics of the particles, some particles will ignite and burn completely, whereas others behave as half-inert and burn only partially,” Egolfopoulos said. The researchers measured particle size, speed and distribution to determine the optimal conditions for efficient combustion.

“In reduced gravity, a low-speed gas was more effective for complete fuel consumption,” said Campbell. “However, when we ignited the pellets in our laboratory at USC, in earth’s gravity, a much higher gas velocity was needed to carry the pellets to the flame. Increased speed caused some of the fuel pellets to burn incompletely.”

NASA is finding additional applications for the work as the space agency looks to longer spaceflight missions and human exploration of the moon and Mars. In trips to the moon or Mars, solid fuels derived from the lunar or Martian soil, or solid carbon, extracted from the Martian atmosphere, may fuel the astronauts ’ return flights to Earth.

The researchers have created a computational model to numerically simulate their experiments and predict the combustion of solid fuel particles in a gaseous stream, based on thermal conditions and particle properties.

They will present their findings, and a few surprises, at the 30 th International Symposium on Combustion, to be held July 25-30 in Chicago, Illinois.

Diane Ainsworth | EurekAlert!
Further information:
http://www.usc.edu

More articles from Physics and Astronomy:

nachricht New Insight into Molecular Processes
22.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Exoplanet stepping stones
21.11.2018 | W. M. Keck Observatory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>