Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Light On A Chip’ Potential Seen By Scientists Spoofing Natural Phenomenon

09.07.2004


An ultrafine nanometre ’drill’ could be used to make some of the tiniest lenses imaginable and may also allow scientists to harness light for use in optical computers of the future, thanks to research published today.



Scientists from the UK and Spain describe in this week’s Science Express (8 July) how artificial materials with tiny grooves and holes drilled into their surfaces could channel and focus light beams on a chip.

When light hits the surface of a metal such as silver, as well as a reflection, another form of light is excited at the surface. This light, bound to the surface as a small mixture of light and electrons, is called a surface plasmon, its behaviour likened to waves on the surface of a ’sea’ of electrons. For many years a curiosity, the properties of plasmons have only recently been fully explored.


In their paper this week, the theorists show that holes perforating a surface can spoof the creation of these plasmons, and they suggest that the effect could be harnessed to channel light at tiny scales, overcoming one of the constraints facing designers of the first optical computer.

"They aren’t really plasmons but they behave like them," says Professor Sir John Pendry of Imperial College London and first author of the paper. "They capture light and lock them up in very tiny spaces."

The holes, which may be just a few tens of nanometres wide, can be made using a special ’drill’ called an ion-beam. A human hair is 100 times larger in diameter by comparison.

This work suggests that engineered surface plasmons could be as simple as drilling holes in a perfectly conducting material.

"It opens up a new dimension of design for the people looking to use surface plasmons to put light on a chip," says Sir John.

By analogy with an electronic chip full of transistors, the most basic requirement is to join the bits together with wires. But in using light instead of electrons the challenge is how to replace the wires to move light around the chip. Optical fibre is not the answer as it is 50 microns wide and as big as the chip.

"Instead of etching a path on a chip, now we could drill holes to make a path to control light on a chip," says Sir John. "The plasmons contain the same signals as the light exciting them and therefore can be used to transport information across the surface."

"Alternatively we could send the plasmons across the surface in free flight, rather than in channels. We could drill holes to make lenses to focus it."

Another use could be in shaping light. As light goes through holes in surfaces, smaller drilled grooves around the hole act to stop the light spreading out, focusing it instead, and in effect forming one of the tiniest lenses in the world at just a few microns wide.

Research by Thomas Ebbesen and colleagues in 1998 at the University Louis Pasteur, Strasbourg, demonstrated a way of forcing light to go through tiny holes at the surface of a metal. By turning light into a surface plasmon then back again, they demonstrated that the effect worked, but only with the metals silver and gold. The theorists speculated that a material could be engineered that does not naturally have surface plasmons yet still has the same effect.

"It turns out that if you take something completely inert, just by drilling holes you can make it behave as if it’s got these surface excitations," says Sir John. "If you’ve got holes and you try to bounce light off the surface some light stays stuck in the holes, just as if it were stuck to the surface of silver in a surface plasmon."

Surface plasmons were first described by Rufus Ritchie in the 1950s and subsequently applied by Ritchie and others to energy loss by the high voltage electrons in an electron microscope.

This work is part of a European collaboration between researchers at Imperial, University of Exeter, Strasbourg, Madrid and Zaragoza. The European Commission provided financial support for this research under project FP6-NMP4-CT-2003-505699.

Tom Miller | alfa
Further information:
http://www.imperial.ac.uk

More articles from Physics and Astronomy:

nachricht When fluid flows almost as fast as light -- with quantum rotation
22.06.2018 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Thermal Radiation from Tiny Particles
22.06.2018 | Universität Greifswald

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>